login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267436
Number of self-inverse permutations of [2n] with longest increasing subsequence of length n.
4
1, 1, 5, 31, 265, 2446, 26069, 294386, 3628517, 46938514, 645978814, 9265791393, 139408562319, 2174338555026, 35259402634616, 590187761512336, 10209739522685893, 181678453872654154, 3326776921054665350, 62485419303819431072, 1203772979032614462448
OFFSET
0,3
COMMENTS
Also the number of 2n-length words w over n-ary alphabet {a1,a2,...,an} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,an) >= 1, where #(z,x) counts the letters x in word z. The a(2) = 5 words of length 4 over alphabet {a,b} are: aaab, aaba, abaa, aabb, abab.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..70 (terms 0..55 from Alois P. Heinz)
FORMULA
a(n) = A047884(2n,n).
EXAMPLE
a(2) = 5: 1432, 2143, 3214, 3412, 4231.
MAPLE
h:= proc(l) local n; n:= nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]), add(
g(n-i*j, i-1, [l[], i$j]), j=0..n/i)):
a:= n-> g(n$2, [n]):
seq(a(n), n=0..25);
MATHEMATICA
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
a[n_] := g[n, n, {n}];
a /@ Range[0, 25] (* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 15 2016
STATUS
approved