The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267437 A linear recurrence related to the elliptic curves y^2 = x^3 -35*a^2*x - 98*a^3 with a = -1, -5, -6, -17, or -111. 3
11, 23, 67, 151, 275, 487, 963, 2039, 4211, 8327, 16291, 32407, 65363, 131623, 263043, 524087, 1046579, 2095559, 4196707, 8394199, 16778003, 33544039, 67096899, 134226551, 268468211, 536886023, 1073691427, 2147403031, 4294987475, 8590116007, 17180010243 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
Abatzoglou, Silverberg, Sutherland, & Wong give a quasi-quadratic algorithm for finding primes in this sequence, which relies on a correspondence between the Frobenius endomorphism of one of the five elliptic curves given above and complex multiplication in Z[(1 + sqrt(-7))/2].
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 2..3319
Alexander Abatzoglou, Alice Silverberg, Andrew V. Sutherland, and Angela Wong, Deterministic elliptic curve primality proving for a special sequence of numbers, Tenth Algorithmic Number Theory Symposium (ANTS X, 2012), pp. 1-20.
Alexander Abatzoglou, Alice Silverberg, Andrew V. Sutherland, Angela Wong, Deterministic elliptic curve primality proving for a special sequence of numbers, arXiv:1202.3695 [math.NT], 2012.
FORMULA
a(n) = 4*a(n-1) - 7*a(n-2) + 8*a(n-3) - 4*a(n-4).
a(n) ~ 4*2^n.
G.f.: x^2*(11 - 21*x + 52*x^2 - 44*x^3)/((1 - x)*(1 - 2*x)*(1 - x + 2*x^2)). - Bruno Berselli, Jan 24 2016
a(n) = 1 + 2^(2+n) + 2*(1/2-(i*sqrt(7))/2)^n + 2*(1/2+(i*sqrt(7))/2)^n where i=sqrt(-1). - Colin Barker, Jul 02 2017
MATHEMATICA
RecurrenceTable[{a[n] == 4 a[n - 1] - 7 a[n - 2] + 8 a[n - 3] - 4 a[n - 4], a[2] == 11, a[3] == 23, a[4] == 67, a[5] == 151}, a, {n, 2, 30}] (* Michael De Vlieger, Jan 24 2016 *)
LinearRecurrence[{4, -7, 8, -4}, {11, 23, 67, 151}, 40] (* Vincenzo Librandi, Jan 27 2016 *)
PROG
(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -4, 8, -7, 4]^n*[9; 11; 11; 23])[1, 1]
(PARI) first(n)=if(n<5, return(first(5)[1..n-1])); my(v=vector(n-1)); v[1]=11; v[2]=23; v[3]=67; v[4]=151; for(k=5, #v, v[k]=4*v[k-1]-7*v[k-2]+8*v[k-3]-4*v[k-4]); v
(Magma) I:=[11, 23, 67, 151]; [n le 4 select I[n] else 4*Self(n-1)-7*Self(n-2)+8*Self(n-3)-4*Self(n-4): n in [1..31]]; // Vincenzo Librandi, Jan 27 2016
(PARI) i=I; vector(50, n, n++; round(1 + 2^(2+n) + 2*(1/2-(i*sqrt(7))/2)^n + 2*(1/2+(i*sqrt(7))/2)^n)) \\ Colin Barker, Jul 02 2017
CROSSREFS
Sequence in context: A081510 A068844 A139905 * A267438 A102273 A195463
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 04:46 EDT 2024. Contains 372958 sequences. (Running on oeis4.)