login
A139905
Primes of the form 11x^2+23y^2.
1
11, 23, 67, 103, 191, 199, 251, 367, 379, 383, 419, 467, 619, 631, 643, 727, 751, 839, 907, 911, 971, 983, 1103, 1123, 1171, 1259, 1279, 1303, 1307, 1367, 1423, 1483, 1523, 1571, 1607, 1699, 1747, 1831, 1907, 1951, 2011, 2039, 2179, 2311, 2399
OFFSET
1,1
COMMENTS
Discriminant=-1012. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {11, 15, 23, 67, 91, 103, 111, 135, 155, 159, 191, 199, 203, 235, 247, 251, 267, 287, 291, 295, 339, 355, 367, 375, 379, 383, 411, 419, 467, 471, 511, 543, 551, 559, 595, 603, 619, 631, 643, 663, 687, 707, 727, 735, 751, 779, 815, 819, 839, 895, 907, 911, 927, 939, 971, 983, 999} (mod 1012).
MATHEMATICA
QuadPrimes2[11, 0, 23, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(3000) | p mod 1012 in {11, 15, 23, 67, 91, 103, 111, 135, 155, 159, 191, 199, 203, 235, 247, 251, 267, 287, 291, 295, 339, 355, 367, 375, 379, 383, 411, 419, 467, 471, 511, 543, 551, 559, 595, 603, 619, 631, 643, 663, 687, 707, 727, 735, 751, 779, 815, 819, 839, 895, 907, 911, 927, 939, 971, 983, 999}]; // Vincenzo Librandi, Jul 31 2012
CROSSREFS
Sequence in context: A366487 A081510 A068844 * A267437 A267438 A102273
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved