This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106856 Primes of the form x^2+xy+2y^2, with x and y nonnegative. 578
2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821 (list; graph; refs; listen; history; text; internal format)



Discriminant=-7. Binary quadratic forms ax^2+bxy+cy^2 have discriminant d=b^2-4ac.

Consider sequences of primes produced by forms with -100<d<0, abs(b)<=a<=c and gcd(a,b,c)=1. When b is not zero, then there are two cases to consider: (1) nonnegative x and y, and (2) x and y any integers. These restrictions yield 203 sequences of prime numbers, which are organized by discriminant below.

The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2+bxy+cy^2 for any a, b, and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2+bxy+cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. [T. D. Noe, Sep 01 2009]

For other programs see the "Binary Quadratic Forms and OEIS" link.


David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.

L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.


N. J. A. Sloane and Zak Seidov, Table of n, a(n) for n = 1..10000 [The first 1225 terms were found by Zak Seidov]

N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)


QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];

QuadPrimes2[1, 1, 2, 1000]

(This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)



# Lists ALL primes p represented by ax^2+bxy+cy^2 in the range 2 <= p <= prime(M) (where x and y may have any signs). The discriminant b^2-4ac should not be a square, but otherwise may be positive or negative. For square discriminants use the Maple code in A242660. - N. J. A. Sloane, Jun 03 2014

{ fc(a, b, c, M) = my(p, t1, t2, n); t1 = listcreate();

for(n=1, M, p = prime(n);

t2 = qfbsolve(Qfb(a, b, c), p); if(t2 == 0, , listput(t1, p)));



fc(1, 1, 2, 100); \\ Gives A045373 rather than A106856


Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).  A139643, A139827 (other collections of quadratic forms).

For a more complete list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Cf. also A242660.

Sequence in context: A218255 A256481 A085745 * A045387 A103255 A031385

Adjacent sequences:  A106853 A106854 A106855 * A106857 A106858 A106859




T. D. Noe, May 09 2005, Apr 28 2008


Removed old Mathematica programs - T. D. Noe, Sep 09 2009

Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 25 18:43 EST 2015. Contains 264418 sequences.