login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103255
Integers x > 0 such that x^3 + y^3 = z^2 for some y > 0, z > 0, and gcd(x,y) = 1.
3
1, 2, 11, 23, 37, 56, 57, 65, 112, 122, 193, 217, 242, 305, 312, 433, 592, 781, 851, 877, 889, 913, 1001, 1064, 1177, 1201, 1346, 1376, 1617, 1633, 1706, 1729, 1801, 1953, 1960, 1969, 2137, 2162, 2184, 2257, 2345, 2480, 2543, 2920, 3071, 3081, 3482, 3641, 3889, 4019
OFFSET
1,2
LINKS
F. Beukers, The Diophantine equation Ax^p+By^q=Cz^r, Duke Math. J. 91 (1998), 61-88.
H. Darmon and A. Granville, On the equations z^m=F(x,y) and Ax^p+By^q=Cz^r, Bull. Lond. Math. Soc., 27 (6) (1995) 513, Sect 7.2.
EXAMPLE
x=11, y=37, 11^3 + 37^3 = 228^2. 11 is the third entry in the list.
The pairs [x,y] = [a(n),a(?)] for the first few terms are [1, 2], [2, 1], [11, 37], [23, 1177], [37, 11], [56, 65], [57, 112], [65, 56], [112, 57], [122, 1201], [193, 3482], [217, 312], [242, 433]. [Joerg Arndt, Sep 30 2012]
MATHEMATICA
(* This program uses z-values from A099426 b-file. To get 50 terms, the first 200 z-values suffice, the result being the same with the whole b-file of 300 z-values. *)
terms = 50;
zz = Import["https://oeis.org/A099426/b099426.txt", "Table"][[1 ;; 4 terms, 2]];
r[z_] := {x, y, z} /. ToRules[Reduce[GCD[x, y] == 1 && 0<x<y && x^3 + y^3 == z^2, {x, y}, Integers]];
xyz = r /@ zz;
Union[Flatten[xyz[[All, 1 ;; 2]]]][[1 ;; terms]] (* Jean-François Alcover, Jun 13 2019 *)
PROG
(Magma) [ k : k in [1..100] | exists{P : P in IntegralPoints(EllipticCurve([0, k^3])) | P[1] gt 0 and P[2] ne 0 and GCD(Integers()!P[1], k) eq 1} ]; // Geoff Bailey
(Sage) # apparently inefficient as of version 5.2
def is_A103255(n):
E = EllipticCurve([0, n^3])
E.gens(descent_second_limit=16);
for p in E.integral_points():
if p[0] > 0 and p[1] > 0 and gcd(p[1], n) == 1:
return true
return false
[n for n in (1..60) if is_A103255(n)]
# Peter Luschny, Sep 29 2012
(PARI)
is_A103255(x, lim)=
{ /* Warning: just how big lim has to be is unclear */
my(x3=x^3);
for (y=1, lim,
if ( gcd(x, y) != 1, next() );
if ( issquare(x3+y^3), return(1) );
);
return(0);
}
/* Using lim=10^6 reproduces all terms <= 1000: */
for (n=1, 1000, if( is_A103255(n, 10^6), print1(n, ", ")) );
/* Joerg Arndt, Sep 30 2012 */
CROSSREFS
Cf. A099426 (values of z).
Sequence in context: A085745 A106856 A045387 * A375788 A031385 A294551
KEYWORD
nonn,more
AUTHOR
Cino Hilliard, Mar 20 2005
EXTENSIONS
Recomputed and extended by Geoff Bailey (geoff(AT)maths.usyd.edu.au) using MAGMA, Jan 28 2007
a(9)-a(10) from Jonathan Vos Post, May 27 2007
a(11)-a(16) from Vincenzo Librandi, Dec 21 2010
a(17)-a(22) from Joerg Arndt, Sep 30 2012
a(23)-a(50) from Jean-François Alcover, Jun 12 2019
STATUS
approved