OFFSET
1,2
LINKS
F. Beukers, The Diophantine equation Ax^p+By^q=Cz^r, Duke Math. J. 91 (1998), 61-88.
H. Darmon and A. Granville, On the equations z^m=F(x,y) and Ax^p+By^q=Cz^r, Bull. Lond. Math. Soc., 27 (6) (1995) 513, Sect 7.2.
EXAMPLE
x=11, y=37, 11^3 + 37^3 = 228^2. 11 is the third entry in the list.
The pairs [x,y] = [a(n),a(?)] for the first few terms are [1, 2], [2, 1], [11, 37], [23, 1177], [37, 11], [56, 65], [57, 112], [65, 56], [112, 57], [122, 1201], [193, 3482], [217, 312], [242, 433]. [Joerg Arndt, Sep 30 2012]
MATHEMATICA
(* This program uses z-values from A099426 b-file. To get 50 terms, the first 200 z-values suffice, the result being the same with the whole b-file of 300 z-values. *)
terms = 50;
zz = Import["https://oeis.org/A099426/b099426.txt", "Table"][[1 ;; 4 terms, 2]];
r[z_] := {x, y, z} /. ToRules[Reduce[GCD[x, y] == 1 && 0<x<y && x^3 + y^3 == z^2, {x, y}, Integers]];
xyz = r /@ zz;
Union[Flatten[xyz[[All, 1 ;; 2]]]][[1 ;; terms]] (* Jean-François Alcover, Jun 13 2019 *)
PROG
(Magma) [ k : k in [1..100] | exists{P : P in IntegralPoints(EllipticCurve([0, k^3])) | P[1] gt 0 and P[2] ne 0 and GCD(Integers()!P[1], k) eq 1} ]; // Geoff Bailey
(Sage) # apparently inefficient as of version 5.2
def is_A103255(n):
E = EllipticCurve([0, n^3])
E.gens(descent_second_limit=16);
for p in E.integral_points():
if p[0] > 0 and p[1] > 0 and gcd(p[1], n) == 1:
return true
return false
[n for n in (1..60) if is_A103255(n)]
# Peter Luschny, Sep 29 2012
(PARI)
is_A103255(x, lim)=
{ /* Warning: just how big lim has to be is unclear */
my(x3=x^3);
for (y=1, lim,
if ( gcd(x, y) != 1, next() );
if ( issquare(x3+y^3), return(1) );
);
return(0);
}
/* Using lim=10^6 reproduces all terms <= 1000: */
for (n=1, 1000, if( is_A103255(n, 10^6), print1(n, ", ")) );
/* Joerg Arndt, Sep 30 2012 */
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Cino Hilliard, Mar 20 2005
EXTENSIONS
Recomputed and extended by Geoff Bailey (geoff(AT)maths.usyd.edu.au) using MAGMA, Jan 28 2007
a(9)-a(10) from Jonathan Vos Post, May 27 2007
a(11)-a(16) from Vincenzo Librandi, Dec 21 2010
a(17)-a(22) from Joerg Arndt, Sep 30 2012
a(23)-a(50) from Jean-François Alcover, Jun 12 2019
STATUS
approved