login
A375788
Prime numbers such that the product of their digits is a highly composite number.
0
2, 11, 23, 41, 43, 61, 83, 149, 211, 223, 229, 263, 283, 419, 431, 433, 443, 461, 491, 641, 661, 823, 853, 859, 941, 1123, 1213, 1223, 1229, 1231, 1283, 1321, 1381, 1423, 1433, 1453, 1459, 1543, 1549, 1583, 1621, 1823, 1831, 1861, 2111, 2113, 2129, 2131, 2143
OFFSET
1,1
MATHEMATICA
seq[digmax_] := Module[{hcn = Select[Import["https://oeis.org/A002182/b002182.txt", "Table"][[;; , 2]], # < 10^digmax &]}, Select[Prime[Range[PrimePi[10^digmax]]], MemberQ[hcn, Times @@ IntegerDigits[#]] &]]; seq[4] (* Amiram Eldar, Aug 29 2024 *)
PROG
(Python)
from math import *
from sympy import *
numbers =[1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440]#this is the list of highly composite numbers
digits = []
result = 1
for i in range(100000):#the 100000 in here is what you'll want to change to get more of these numbers
result = 1
if isprime(i) == True:
digits = [*str(i)]
for j in range(len(str(i))):
result = result*int(digits[j])
for k in numbers:
if result == k:
print(i)
CROSSREFS
Cf. A002182.
Sequence in context: A106856 A045387 A103255 * A031385 A294551 A179878
KEYWORD
nonn,base
AUTHOR
Edoardo Sangiuliano, Aug 28 2024
EXTENSIONS
More terms from Amiram Eldar, Aug 29 2024
STATUS
approved