login
A373225
Primes p = prime(k) such that 0 = Sum_{j=1..k} T(k, j) where T(n, k) = K(prime(n), prime(k)) * K(prime(k), prime(n)) and K is the Kronecker symbol.
4
2, 11, 23, 31, 47, 59, 67, 103, 127, 419, 431, 439, 467, 1259, 1279, 1303, 26947, 615883, 616787, 617051, 617059, 617087, 617647, 617731, 617819, 617879, 618463, 618559, 618587, 618671, 620467, 623867, 623879, 624199, 624271, 624311, 624319, 624331, 626887, 626987, 627071
OFFSET
1,1
COMMENTS
It appears that, apart from 1st term 2, this is a subsequence of A096448. - Michel Marcus, May 30 2024
For n > 2, the sequence is exactly those terms p in A096448 with p == 3 (mod 4); see linked proof. - Michael S. Branicky, May 30 2024
LINKS
Michael S. Branicky, Proof for A373225
EXAMPLE
The corresponding indices in A373224 start: 1, 5, 9, 11, 15, 17, 19, 27, 31, 81, 83, 85, 91, 205, 207, 213.
T(k, j) defined as in the name. 11 is a term because 11 = prime(5) and Sum_{j=1..5} T(k, j) = 1 + (-1) + 1 + (-1) + 0 = 0.
MAPLE
A := select(n -> A373224(n) = 0, [seq(1..500)]):
seq(ithprime(a), a in A);
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, May 29 2024
EXTENSIONS
a(17) onward from Michel Marcus, May 30 2024
STATUS
approved