login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033221
Primes of form x^2+31*y^2.
4
31, 47, 67, 131, 149, 173, 227, 283, 293, 349, 379, 431, 521, 577, 607, 617, 653, 811, 839, 853, 857, 919, 937, 971, 1031, 1063, 1117, 1187, 1213, 1237, 1259, 1303, 1327, 1451, 1493, 1523, 1559, 1583, 1619, 1663, 1721, 1723, 1741, 1879, 1931, 1973, 1993, 2003, 2017, 2153, 2273, 2333, 2341, 2521, 2531, 2539, 2543, 2609, 2707, 2711, 2713, 2767, 2797
OFFSET
1,1
COMMENTS
Also primes of the form x^2+xy+8y^2. - N. J. A. Sloane, Jun 02 2014
Also primes of the form x^2-xy+8y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Primes p such that the polynomial X^3 + X + 1 splits mod p (see Williams and Hudson link). - Robert Israel, Jun 01 2020
REFERENCES
David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 2000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
K. Williams and R. Hudson, Representation of primes by the principal form of discriminant -D when the classnumber h(-D) is 3, Acta Arithmetica 57.2 (1991): 131-153.
MAPLE
N:= 10000: # for terms <= N
S:= select(isprime, {31, seq(seq(x^2+31*y^2, y=1..floor(sqrt((N-x^2)/31))),
x=1..floor(sqrt(N)))}):
sort(convert(S, list)); # Robert Israel, Jun 01 2020
MATHEMATICA
QuadPrimes2[1, 0, 31, 10000] (* see A106856 *)
CROSSREFS
Primes in A243176.
Sequence in context: A229624 A270781 A075586 * A127576 A139896 A289839
KEYWORD
nonn,easy
AUTHOR
STATUS
approved