login
A075586
Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 6.
10
31, 47, 67, 103, 109, 163, 193, 277, 313, 349, 379, 397, 457, 463, 487, 877, 1087, 1093, 1279, 1303, 1567, 1873, 2269, 2347, 2473, 2797, 3697, 4447, 4789, 4999, 5077, 5413, 5503, 5923, 6007, 6217, 6469, 6997, 7603, 7639, 7723, 7933, 8779, 9277, 10159
OFFSET
1,1
COMMENTS
For very large n, the probability of a(n) not being a twin prime is extremely small, unless the twin primes conjecture is false. - Sam Alexander, Oct 20 2003
EXAMPLE
Between 31 and the next prime 37, there are 5 composite numbers whose prime divisors are respectively for 32: {2}, 33: {3,11}, 34: {2,17}, 35: {5,7} and 36: {2,3}; hence, these distinct prime divisors are {2,3,5,7,11,17}, the number of these distinct prime divisors is 6, so 31 is a term. - Bernard Schott, Sep 26 2019
MATHEMATICA
Select[Partition[Prime[Range[1250]], 2, 1], Length[Union[Flatten[ FactorInteger/@ Range[ #[[1]]+1, #[[2]]-1], 1][[All, 1]]]]==6&][[All, 1]] (* Harvey P. Dale, May 25 2020 *)
PROG
(Magma) a:=[]; for k in PrimesInInterval(2, 10000) do b:={}; for s in [k..NextPrime(k)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 6 then Append(~a, k); end if; end for; a; // Marius A. Burtea, Sep 26 2019
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 26 2002
EXTENSIONS
More terms from Sam Alexander, Oct 20 2003
STATUS
approved