login
A068229
Primes congruent to 7 (mod 12).
32
7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271, 283, 307, 331, 367, 379, 439, 463, 487, 499, 523, 547, 571, 607, 619, 631, 643, 691, 727, 739, 751, 787, 811, 823, 859, 883, 907, 919, 967, 991, 1039, 1051, 1063, 1087, 1123, 1171, 1231
OFFSET
1,1
COMMENTS
Primes of the form 3x^2 + 4y^2. - T. D. Noe, May 08 2005
It appears that all terms starting from term 103 are primes which are the sum of 5 positive (n > 0) different squares in more than one way (A193143) - Vladimir Joseph Stephan Orlovsky, Jul 16 2011.
LINKS
FORMULA
a(n) ~ 4n log n. - Charles R Greathouse IV, Dec 07 2022
MATHEMATICA
Select[Prime/@Range[250], Mod[#, 12] == 7 &]
PROG
(PARI) for(i=1, 250, if(prime(i)%12==7, print(prime(i))))
(Magma) [ p: p in PrimesUpTo(1400) | p mod 12 in {7} ]; // Vincenzo Librandi, Jul 14 2012
(PARI) is_A068229(n)=n%12==7 && isprime(n) \\ then, e.g.,
select(is_A068229, primes(250)) \\ - M. F. Hasler, Jan 25 2013
KEYWORD
easy,nonn
AUTHOR
Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002
EXTENSIONS
Edited by Dean Hickerson, Feb 27 2002
STATUS
approved