login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068231
Primes congruent to 11 mod 12.
38
11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, 311, 347, 359, 383, 419, 431, 443, 467, 479, 491, 503, 563, 587, 599, 647, 659, 683, 719, 743, 827, 839, 863, 887, 911, 947, 971, 983, 1019, 1031, 1091, 1103, 1151, 1163, 1187, 1223
OFFSET
1,1
COMMENTS
Intersection of A002145 (primes of form 4n+3) and A003627 (primes of form 3n-1). So these are both Gaussian primes with no imaginary part and Eisenstein primes with no imaginary part. - Alonso del Arte, Mar 29 2007
Is this the same sequence as A141187 (apart from the initial 3)?
If p is prime of the form 2*a(n)^k + 1, then p divides a cyclotomic number Phi(a(n)^k, 2). - Arkadiusz Wesolowski, Jun 14 2013
Also a(n) = primes p dividing A014138((p-3)/2), where A014138(n) = Partial sums of (Catalan numbers starting 1,2,5,...), cf. A000108. - Alexander Adamchuk, Dec 27 2013
LINKS
MATHEMATICA
Select[Prime/@Range[250], Mod[ #, 12]==11&]
Select[Range[11, 1500, 12], PrimeQ] (* Harvey P. Dale, Sep 15 2023 *)
PROG
(PARI) for(i=1, 250, if(prime(i)%12==11, print(prime(i))))
(Magma) [p: p in PrimesUpTo(1500) | p mod 12 eq 11 ]; // Vincenzo Librandi, Aug 14 2012
(MATLAB)
%4n-1 and 6n-1 primes
n = 1:10000;
n2 = 4*n-1;
n3 = 3*n-1;
p = primes(max(n2));
Res = intersect(n2, n3);
Res2 = intersect(Res, p);
% Jesse H. Crotts, Sep 25 2016
KEYWORD
easy,nonn
AUTHOR
Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002
EXTENSIONS
Edited by Dean Hickerson, Feb 27 2002
STATUS
approved