The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068231 Primes congruent to 11 mod 12. 36
 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, 311, 347, 359, 383, 419, 431, 443, 467, 479, 491, 503, 563, 587, 599, 647, 659, 683, 719, 743, 827, 839, 863, 887, 911, 947, 971, 983, 1019, 1031, 1091, 1103, 1151, 1163, 1187, 1223 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Intersection of A002145 (primes of form 4n+3) and A003627 (primes of form 3n-1). So these are both Gaussian primes with no imaginary part and Eisenstein primes with no imaginary part. - Alonso del Arte, Mar 29 2007 Is this the same sequence as A141187 (apart from the initial 3)? If p is prime of the form 2*a(n)^k + 1, then p divides a cyclotomic number Phi(a(n)^k, 2). - Arkadiusz Wesolowski, Jun 14 2013 Also a(n) = primes p dividing A014138((p-3)/2), where A014138(n) = Partial sums of (Catalan numbers starting 1,2,5,...), cf. A000108. - Alexander Adamchuk, Dec 27 2013 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 MATHEMATICA Select[Prime/@Range[250], Mod[ #, 12]==11&] PROG (PARI) for(i=1, 250, if(prime(i)%12==11, print(prime(i)))) (MAGMA) [p: p in PrimesUpTo(1500) | p mod 12 eq 11 ]; // Vincenzo Librandi, Aug 14 2012 (MATLAB) %4n-1 and 6n-1 primes n = 1:10000; n2 = 4*n-1; n3 = 3*n-1; p = primes(max(n2)); Res = intersect(n2, n3); Res2 = intersect(Res, p); % Jesse H. Crotts, Sep 25 2016 CROSSREFS Cf. A068227, A068228, A068229, A040117, A068232, A068233, A068234, A068235, A000040, A014138, A000108. Sequence in context: A029468 A198588 A334829 * A185005 A073024 A161897 Adjacent sequences:  A068228 A068229 A068230 * A068232 A068233 A068234 KEYWORD easy,nonn AUTHOR Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002 EXTENSIONS Edited by Dean Hickerson, Feb 27 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 19:52 EDT 2020. Contains 336256 sequences. (Running on oeis4.)