login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141187 Primes of the form -x^2+6*x*y+3*y^2 (as well as of the form 8*x^2+12*x*y+3*y^2). 7
3, 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, 311, 347, 359, 383, 419, 431, 443, 467, 479, 491, 503, 563, 587, 599, 647, 659, 683, 719, 743, 827, 839, 863, 887, 911, 947, 971, 983, 1019, 1031, 1091, 1103, 1151, 1163, 1187, 1223 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Discriminant = 48. Class = 2. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.

Values of the quadratic form are {0,3,8,11} mod 12, so all values with the exception of 3 are also in A068231. - R. J. Mathar, Jul 30 2008

Is this the same sequence (apart from the initial 3) as A068231?

REFERENCES

Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.

D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

LINKS

Table of n, a(n) for n=1..51.

N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)

EXAMPLE

a(3)=23 because we can write 23= -1^2+6*1*2+3*2^2 (or 23=8*1^2+12*1*1+3*1^2).

MATHEMATICA

Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == -x^2 + 6*x*y + 3*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)

CROSSREFS

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A068228 (d=48).

Cf. A243169.

For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Sequence in context: A078723 A294368 A296556 * A107138 A145473 A335677

Adjacent sequences:  A141184 A141185 A141186 * A141188 A141189 A141190

KEYWORD

nonn

AUTHOR

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 12 2008

EXTENSIONS

More terms from Colin Barker, Apr 05 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 22 07:09 EDT 2021. Contains 345374 sequences. (Running on oeis4.)