

A038889


Primes p such that 17 is a square mod p.


47



2, 13, 17, 19, 43, 47, 53, 59, 67, 83, 89, 101, 103, 127, 137, 149, 151, 157, 179, 191, 223, 229, 239, 251, 257, 263, 271, 281, 293, 307, 331, 349, 353, 359, 373, 383, 389, 409, 421, 433, 443, 457, 461, 463, 467, 491, 509, 523, 557, 563, 569, 577, 587, 593
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Also primes of the form 2*x^2+x*y2*y^2 (as well as of the form 2*x^2+5*x*y+y^2). Discriminant = 17. Class = 1. This was originally a separate entry, submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 06 2008. R. J. Mathar proved that this coincides with the present sequence, Jul 22 2008
Also, primes which are a square (mod 17) (or, (mod 34), cf. A191025).  M. F. Hasler, Jan 15 2016


REFERENCES

Z. I. Borevich and I. R. Shafarevich, Number Theory.
D. B. Zagier, Zetafunktionen und quadratische Koerper


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)


MATHEMATICA

Select[Prime[Range[200]], JacobiSymbol[17, #]!=1&] (* Harvey P. Dale, Sep 20 2011 *)


PROG

(PARI) is(n)=isprime(n)&&issquare(Mod(17, n)) \\ Charles R Greathouse IV, Mar 21 2013


CROSSREFS

Cf. A038889 (17 is a square mod p); A141111, A141112 (d=65).
Primes in A035258.
Sequence in context: A163786 A153507 A124277 * A152652 A142339 A105913
Adjacent sequences: A038886 A038887 A038888 * A038890 A038891 A038892


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


EXTENSIONS

Edited by N. J. A. Sloane, Jul 28 2008 at the suggestion of R. J. Mathar


STATUS

approved



