login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141123
Primes of the form -x^2+2*x*y+2*y^2 (as well as of the form 3*x^2+6*x*y+2*y^2).
42
2, 3, 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, 311, 347, 359, 383, 419, 431, 443, 467, 479, 491, 503, 563, 587, 599, 647, 659, 683, 719, 743, 827, 839, 863, 887, 911, 947, 971, 983, 1019, 1031, 1091, 1103, 1151, 1163, 1187, 1223
OFFSET
1,1
COMMENTS
Discriminant = 12. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
EXAMPLE
a(3) = 11 because we can write 11 = -1^2 + 2*1*2 + 2*2^2 (or 11 = 3*1^2 + 6*1*1 + 2*1^2).
MAPLE
N:= 2000:
S:= NULL:
for xx from 1 to floor(2*sqrt(N/3)) do
for yy from ceil(sqrt(max(1, 3*xx^2-N))) to floor(sqrt(3)*xx) do
S:= S, 3*xx^2-yy^2;
od od:
sort(convert(select(isprime, {S}), list)); # Robert Israel, Jul 20 2020
MATHEMATICA
Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == -x^2 + 2*x*y + 2*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]]
(* or: *)
Select[Prime[Range[200]], # == 2 || # == 3 || Mod[#, 12] == 11&] (* Jean-François Alcover, Oct 25 2016, updated Oct 29 2016 *)
CROSSREFS
Cf. A068228 (d = 12), A068231 (Primes congruent to 11 (mod 12)), A141111, A141112 (d = 65).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. A084917.
Sequence in context: A346605 A091310 A040994 * A263729 A246496 A119641
KEYWORD
nonn
AUTHOR
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 05 2008
EXTENSIONS
More terms from Colin Barker, Apr 05 2015
STATUS
approved