OFFSET
1,1
COMMENTS
Discriminant = 12. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
LINKS
Robert Israel, Table of n, a(n) for n = 1..6514
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
EXAMPLE
a(3) = 11 because we can write 11 = -1^2 + 2*1*2 + 2*2^2 (or 11 = 3*1^2 + 6*1*1 + 2*1^2).
MAPLE
N:= 2000:
S:= NULL:
for xx from 1 to floor(2*sqrt(N/3)) do
for yy from ceil(sqrt(max(1, 3*xx^2-N))) to floor(sqrt(3)*xx) do
S:= S, 3*xx^2-yy^2;
od od:
sort(convert(select(isprime, {S}), list)); # Robert Israel, Jul 20 2020
MATHEMATICA
Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == -x^2 + 2*x*y + 2*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]]
(* or: *)
Select[Prime[Range[200]], # == 2 || # == 3 || Mod[#, 12] == 11&] (* Jean-François Alcover, Oct 25 2016, updated Oct 29 2016 *)
CROSSREFS
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. A084917.
KEYWORD
nonn
AUTHOR
Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 05 2008
EXTENSIONS
More terms from Colin Barker, Apr 05 2015
STATUS
approved