

A038883


Odd primes p such that 13 is a square mod p.


45



3, 13, 17, 23, 29, 43, 53, 61, 79, 101, 103, 107, 113, 127, 131, 139, 157, 173, 179, 181, 191, 199, 211, 233, 251, 257, 263, 269, 277, 283, 311, 313, 337, 347, 367, 373, 389, 419, 433, 439, 443, 467, 491, 503, 521, 523, 547, 563, 569, 571, 599, 601, 607, 641
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Equivalently, by quadratic reciprocity (since 13 == 1 mod 4), primes p which are squares mod 13.
The squares mod 13 are 0, 1, 4, 9, 3, 12 and 10.
Also primes of the form x^2 + 3*x*y  y^2. Discriminant = 13. Class = 1. This was originally a separate entry, submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 06 2008. R. J. Mathar proved that this coincides with the present sequence, Jul 22 2008
Primes p such that x^2 + x = 3 has a solution mod p (the solutions over the reals are (1+sqrt(13))/2). [Joerg Arndt, Jul 27 2011]


REFERENCES

Z. I. Borevich and I. R. Shafarevich, Number Theory.
D. B. Zagier, Zetafunktionen und quadratische Koerper.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Peter Luschny, Binary Quadratic Forms
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)


EXAMPLE

13 == 1 mod 3 and 1 is a square, so 3 is on the list.
101 is prime and congruent to 7^2 = 49 == 10 (mod 13), so 101 is on the list.


MATHEMATICA

Select[ Prime@ Range@ 118, JacobiSymbol[ #, 13] > 1 &] (* Robert G. Wilson v, May 16 2008 *)
Select[Flatten[Table[13n + {1, 3, 4, 9, 10, 12}, {n, 50}]], PrimeQ[#] &] (* Alonso del Arte, Sep 16 2012 *)


PROG

(PARI) forprime(p=3, 1e3, if(issquare(Mod(13, p)), print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
(Sage) # uses[binaryQF]
# The function binaryQF is defined in the link 'Binary Quadratic Forms'.
Q = binaryQF([1, 3, 1])
print(Q.represented_positives(641, 'prime')) # Peter Luschny, Sep 20 2018


CROSSREFS

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (primes p such that d=13 is a square mod p). A038889 (d=17). A141111, A141112 (d=65).
Cf. A296937.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Sequence in context: A309291 A040123 A296936 * A141188 A019347 A184777
Adjacent sequences: A038880 A038881 A038882 * A038884 A038885 A038886


KEYWORD

nonn


AUTHOR

N. J. A. Sloane


EXTENSIONS

Edited by N. J. A. Sloane, Apr 27 2008, Jul 28 2008


STATUS

approved



