login
A120330
Primes not congruent to +- 1, 3, or 4 (mod 13).
1
2, 5, 7, 11, 13, 19, 31, 37, 41, 47, 59, 67, 71, 73, 83, 89, 97, 109, 137, 149, 151, 163, 167, 193, 197, 223, 227, 229, 239, 241, 271, 281, 293, 307, 317, 331, 349, 353, 359, 379, 383, 397, 401, 409, 421, 431, 449, 457, 461, 463, 479, 487, 499, 509, 541, 557
OFFSET
1,1
COMMENTS
This sequence consists of all the primes that are not in A270997. - Bill McEachen, Feb 16 2022
FORMULA
A000040 \ A038883 U {13}: Complement of A038883 in the primes, and 13. - M. F. Hasler, Feb 17 2022
EXAMPLE
37 is prime and congruent to -2 (mod 13), so 37 is a term.
MATHEMATICA
For[a = 1, a < 1001, a++, p = Prime[a]; t = Mod[p, 13]; If[Or[t == 1, t == 3, t == 4, t == 9, t == 10, t == 12] == False, Print[p]]]
Select[Prime[Range[110]], !MemberQ[{1, 3, 4, 9, 10, 12}, Mod[#, 13]]&] (* Harvey P. Dale, May 12 2019 *)
PROG
(PARI) select( {is_A120330(n)=!bittest(5658, n%13)&&isprime(n)}, [0..567]) \\ M. F. Hasler, Feb 17 2022
CROSSREFS
Cf. A038883 (primes congruent to 0, +-1, +-3, +-4 (mod 13)).
Cf. A270997.
Sequence in context: A098170 A256396 A291280 * A023216 A079449 A236071
KEYWORD
easy,nonn
AUTHOR
Neil Fernandez, Jun 22 2006
EXTENSIONS
Corrected by N. J. A. Sloane, May 12 2019 at the suggestion of Harvey P. Dale
STATUS
approved