|
|
A007520
|
|
Primes == 3 (mod 8).
(Formerly M2882)
|
|
46
|
|
|
3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 283, 307, 331, 347, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 587, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 883, 907, 947, 971, 1019, 1051, 1091, 1123, 1163, 1171, 1187
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Primes of the form 3x^2 + 2xy + 3y^2 with x and y in Z. - T. D. Noe, May 07 2005
Also, primes of the form X^2 + 2Y^2, X=|x-y|, Y=x+y. - Zak Seidov, Dec 06 2011
Each term is the sum of no fewer than three positive squares. - T. D. Noe, Nov 15 2010
Smallest terms expressible as sum of three distinct positive squares: 59 = 1^2 + 3^2 + 7^2, 83 = 3^2 + 5^2 + 7^2, 107, 131, 139, 179, 211, 227, 251, 283, 307. - Zak Seidov, Dec 06 2011
Except for the first term it appears that the terms of the sequence are also primes of the form 2k+1 such that 3*(2k+1) divides 2^k+1. - Hilko Koning, Dec 06 2019
Theorem (Legendre symbol): With p an odd prime and a an integer coprime to p the Legendre symbol L(a/p) = -1 if a is a quadratic non-residue (mod p) and L(2/p) = -1 if p == +-3 (mod 8).
Theorem (Euler's criterion): L(a/p) == a^((p-1)/2) (mod p) so with a = 2 and prime p = 2k + 1 then -1 == 2^k (mod (2k+1)). So prime numbers 2k+1 = +-3 (mod 8) are the prime numbers 2k+1 | 2^k+1.
If 2k+1 == -3 (mod 8) then k is even and 2^k+1 is not divisible by 3 and if 2k+1 == +3 (mod 8) then k is odd and 2^k+1 is divisible by 3.
Hence prime numbers 2k+1 == 3 (mod 8) are prime numbers such that 3*(2k+1) | 2^k+1. Or, including the first term of the sequence, prime numbers 2k+1 with k odd such that 2k+1 | 2^k+1.
(End)
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Alexander Kalmynin, On Novák numbers, arXiv:1611.00417 [math.NT], 2016. See P0 in Theorem 7 p. 11.
|
|
MAPLE
|
option remember;
local a;
if n = 1 then
return 3;
end if;
a := nextprime(procname(n-1)) ;
while modp(a, 8) <> 3 do
a := nextprime(a) ;
end do:
a ;
end proc:
|
|
MATHEMATICA
|
p=3; k=0; nn=1000; Reap[While[k<nn, If[PrimeQ[p], k++; Sow[p]]; p=p+8]][[2, 1]] (* Zak Seidov, Dec 06 2011 *)
Select[Prime[Range[200]], Mod[#, 8]==3&] (* Harvey P. Dale, Apr 05 2023 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|