OFFSET
1,1
COMMENTS
Discriminant -23.
Also primes of the form x^2 + x*y + 6*y^2. - N. J. A. Sloane, Jun 02 2014
Also primes of the form x^2 - x*y + 6*y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Primes p such that X^3-X+1 is split modulo p. E.g., X^3-X+1 = (X-33)*(X-40)*(X-94) modulo 167. - Julien Freslon (julien.freslon(AT)wanadoo.fr), Feb 24 2007
It appears that, if x > 0, then tau(p) = A000594(p) == 2 (mod 23). - Comment from Jud McCranie
In fact, this sequence appears to be the same as primes p such that RamanujanTau(p) == {1,2} (mod 23). - Ray Chandler, Dec 01 2016
Excluding the first term, this sequence is the intersection of A191021 and A256567. - Arkadiusz Wesolowski, Oct 03 2021
REFERENCES
David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
Joe Roberts, Lure of the Integers, "Integer 23 - the Tau function".
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
John Raymond Wilton, Congruence properties of Ramanujan's function τ(n), Proceedings of the London Mathematical Society 2.1 (1930): 1-10. The primes are listed in Table II.
J. R. Wilton, Congruence properties of Ramanujan's function τ(n), annotated copy of page 8 only.
MATHEMATICA
QuadPrimes2[1, 0, 23, 10000] (* see A106856 *)
Join[{23}, nn=23; pMax=5000; Union[Reap[Do[p=x^2 + nn y^2; If[p<=pMax&&PrimeQ[p], Sow[p]], {x, Sqrt[pMax]}, {y, Sqrt[pMax/nn]}]][[2, 1]]]] (* Vincenzo Librandi, Sep 05 2016 *)
PROG
(PARI) isok(p) = isprime(p) && !(kronecker(-23, p)==-1) && !polisirreducible(Mod(1, p)*(x^3-x-1)); \\ Arkadiusz Wesolowski, Oct 03 2021
(PARI) isok(p) = p==23 || (isprime(p) && #polrootsmod(x^3-x-1, p)==3); \\ Arkadiusz Wesolowski, Oct 09 2021
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
STATUS
approved