login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056874
Primes of form x^2+xy+3y^2, discriminant -11.
12
3, 5, 11, 23, 31, 37, 47, 53, 59, 67, 71, 89, 97, 103, 113, 137, 157, 163, 179, 181, 191, 199, 223, 229, 251, 257, 269, 311, 313, 317, 331, 353, 367, 379, 383, 389, 397, 401, 419, 421, 433, 443, 449, 463, 467, 487, 499, 509, 521, 577, 587, 599
OFFSET
1,1
COMMENTS
Also, primes of form (x^2+11*y^2)/4.
Also, primes of the form x^2-xy+3y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Primes congruent to 0, 1, 3, 4, 5 or 9 (mod 11). As this discriminant has class number 1, all binary quadratic forms ax^2+bxy+cy^2 with b^2-4ac=-11 represent these primes. - Rick L. Shepherd, Jul 25 2014
Also, primes which are squares (mod 11) (or, (mod 22), cf. A191020). - M. F. Hasler, Jan 15 2016
Also, primes p such that Legendre(-11,p) = 0 or 1. - N. J. A. Sloane, Dec 25 2017
LINKS
Vincenzo Librandi, N. J. A. Sloane and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi, next 4000 terms from N. J. A. Sloane]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
QuadPrimes2[1, 1, 3, 100000] (* see A106856 *)
PROG
(PARI)
{ fc2(a, b, c, M) = my(p, t1, t2, n);
m = 0;
for(n=1, M, p = prime(n);
t2 = qfbsolve(Qfb(a, b, c), p); if(t2 == 0, , m++; print(m, " ", p )));
}
fc2(1, -1, 3, 10703);
CROSSREFS
Cf. A002346 and A002347 for values of x and y.
Primes in A028954.
Sequence in context: A023202 A049436 A117010 * A280773 A109927 A347287
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 02 2000
EXTENSIONS
Edited by N. J. A. Sloane, Jun 01 2014 and Jun 16 2014
STATUS
approved