login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109927
First primes p connected to two primes either by 2p+1 or 2p-1 upward [downward (p-1)/2 or (p+1)/2].
3
3, 5, 11, 23, 37, 83, 157, 179, 359, 661, 719, 877, 997, 1019, 1237, 1439, 1657, 2039, 2063, 2137, 2459, 2557, 2819, 2903, 2963, 3023, 3061, 3623, 3779, 3803, 3863, 4177, 4261, 4357, 4621, 4919, 5399, 5581, 5639, 6037, 6121, 6217, 6361, 6899, 6983, 7079
OFFSET
1,1
COMMENTS
These primes may be part of Cunningham chains longer than three terms. It seems the two operators are never mixed, except for 3, 5 and 7: -for 3, we have: 2 through <2p-1> -> 3 through <2p+1> -> 7 -for 5: 3 <2p-1> -> 5 <2p+1> -> 11 -for 7: 3 <2p+1> -> 7 <2p-1> -> 13
For p > 7, such a mixed chain with p in the middle is impossible because the number 3 would be a nontrivial factor of either the smallest or the largest term. - Jeppe Stig Nielsen, May 05 2019
Primes (excluding 2 and 7) that divide more than one semiprime triangular number A068443. - Jeppe Stig Nielsen, May 05 2019
The disjoint union of A059455 and A109835. - Jeppe Stig Nielsen, May 05 2019
LINKS
Chris Caldwell's Prime Glossary, Cunningham chains.
EXAMPLE
a(3)=11 is here because 5->11->23 through <2p+1>;
a(4)=23 because 11->23->47 through <2p+1>;
a(5)=37 because 19->37->73 through <2p-1>.
PROG
Terms computed by Gilles Sadowski.
(PARI) forprime(p=3, 10^6, if(p%3==2, isprime((p-1)/2)&&isprime(2*p+1), isprime((p+1)/2)&&isprime(2*p-1))&&print1(p, ", ")) \\ Jeppe Stig Nielsen, May 05 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Alexandre Wajnberg, Aug 31 2005
STATUS
approved