login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155753
a(n) = (n^3 - n + 9)/3.
2
3, 5, 11, 23, 43, 73, 115, 171, 243, 333, 443, 575, 731, 913, 1123, 1363, 1635, 1941, 2283, 2663, 3083, 3545, 4051, 4603, 5203, 5853, 6555, 7311, 8123, 8993, 9923, 10915, 11971, 13093, 14283, 15543, 16875, 18281, 19763, 21323, 22963
OFFSET
1,1
FORMULA
a(n) = a(n-1) + n*(n-1), with a(1)=3 .
From Bruno Berselli, Jun 21 2010: (Start)
G.f.: x*(3 -9*x +11*x^2 -3*x^3)/(1-x)^4.
a(n) + a(n-1) = 2*A153057(n-1) (n>1).
a(n) + A000217(n) = A153057(n) (n>0).
a(n) - 4*a(n-1) + 6*a(n-2) - 4*a(n-3) + a(n-4) = 0 with n>4.
a(n) = 3 + A007290(n+1) = (n^3 - n + 9)/3. (End)
E.g.f.: (1/3)*(-9 + (9 + 3*x^2 + x^3)*exp(x)). - G. C. Greubel, Jun 05 2021
MATHEMATICA
f[n_]:=(n^3 -n +9)/3; f[Range[1, 100]] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2011*)
LinearRecurrence[{4, -6, 4, -1}, {3, 5, 11, 23}, 50] (* Harvey P. Dale, Oct 20 2011 *)
PROG
(PARI) a(n)=(n^3-n)/3+3 \\ Charles R Greathouse IV, Jan 11 2012
(Sage) [(n^3 -n +9)/3 for n in (1..50)] # G. C. Greubel, Jun 05 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 26 2009
EXTENSIONS
Entries confirmed by John W. Layman, Jun 17 2010
Edited by Bruno Berselli, Aug 12 2010
New name from Charles R Greathouse IV, Jan 11 2012
STATUS
approved