OFFSET
1,1
LINKS
Bruno Berselli, Table of n, a(n) for n = 1..10000.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = a(n-1) + n*(n-1), with a(1)=3 .
From Bruno Berselli, Jun 21 2010: (Start)
G.f.: x*(3 -9*x +11*x^2 -3*x^3)/(1-x)^4.
a(n) + a(n-1) = 2*A153057(n-1) (n>1).
a(n) - 4*a(n-1) + 6*a(n-2) - 4*a(n-3) + a(n-4) = 0 with n>4.
a(n) = 3 + A007290(n+1) = (n^3 - n + 9)/3. (End)
E.g.f.: (1/3)*(-9 + (9 + 3*x^2 + x^3)*exp(x)). - G. C. Greubel, Jun 05 2021
MATHEMATICA
f[n_]:=(n^3 -n +9)/3; f[Range[1, 100]] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2011*)
LinearRecurrence[{4, -6, 4, -1}, {3, 5, 11, 23}, 50] (* Harvey P. Dale, Oct 20 2011 *)
PROG
(PARI) a(n)=(n^3-n)/3+3 \\ Charles R Greathouse IV, Jan 11 2012
(Sage) [(n^3 -n +9)/3 for n in (1..50)] # G. C. Greubel, Jun 05 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 26 2009
EXTENSIONS
Entries confirmed by John W. Layman, Jun 17 2010
Edited by Bruno Berselli, Aug 12 2010
New name from Charles R Greathouse IV, Jan 11 2012
STATUS
approved