login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155756
A triangle sequence of polynomial coefficients: p(x,n)=(-1)^(n + 1)*(x - 1)^(3*n + 1)*Sum[(Binomial[m, n]* Binomial[m + 1, n + 1]/(m - n + 1))*(m + 1)^ n*x^m, {m, 0, Infinity}]/(x^n); t(n,m)=coefficients(p(x,n))
0
1, 2, 1, 9, 33, 17, 1, 64, 610, 1180, 595, 70, 1, 625, 11315, 48135, 67245, 33309, 5463, 227, 1, 7776, 228531, 1708496, 4680256, 5339376, 2610776, 522256, 36996, 656, 1, 117649, 5104701, 59221547, 268424247, 551826072, 547629432, 265213752
OFFSET
0,2
COMMENTS
Row sums are:
{1, 3, 60, 2520, 166320, 15135120, 1764322560, 251415964800, 42405492729600,
8269071082272000, 1831223377855872000,...}
FORMULA
p(x,n)=(-1)^(n + 1)*(x - 1)^(3*n + 1)*Sum[(Binomial[m, n]* Binomial[m + 1, n + 1]/(m - n + 1))*(m + 1)^ n*x^m, {m, 0, Infinity}]/(x^n);
t(n,m)=coefficients(p(x,n))
EXAMPLE
{1},
{2, 1},
{9, 33, 17, 1},
{64, 610, 1180, 595, 70, 1},
{625, 11315, 48135, 67245, 33309, 5463, 227, 1},
{7776, 228531, 1708496, 4680256, 5339376, 2610776, 522256, 36996, 656, 1},
{117649, 5104701, 59221547, 268424247, 551826072, 547629432, 265213752, 60598872, 5973447, 211067, 1773, 1},
{2097152, 126049540, 2096330664, 14207052574, 46045110980, 77141715750, 69121920120, 33230236215, 8354341710, 1033843525, 56182148, 1079835, 4586, 1},
{43046721, 3423831975, 77260093125, 731924512275, 3437765874135, 8726259755169, 12530549950875, 10383294890925, 4962943954925, 1341045544795, 196133991009, 14379274775, 462872275, 5125125, 11495, 1},
{1000000000, 101687123005, 2990094781780, 37741149307420, 242438838391372, 868344303959314, 1827360860004316, 2325557079854008, 1811458523454580, 861797333170774, 246383386597348, 40969332412372, 3750975005596, 173027847370, 3467306284, 23028328, 28132, 1},
{25937424601, 3282485876153, 121943147250045, 1978276502459037, 16660492641426414, 80063816942156718, 232316612953922574, 421187996783503950, 486314819595330726, 360267425295559782, 170739215087786982, 51078738006949926, 9404267410779150, 1022873614221774, 61697673399918, 1869498032814, 24180490437, 99233445, 67553, 1}
MATHEMATICA
p[x_, n_] = (-1)^(n + 1)*(x - 1)^( 3*n + 1)*Sum[(Binomial[m, n]*Binomial[m + 1, n + 1]/(m - n + 1))*(m + 1)^n*x^m, {m, 0, Infinity}]/(x^n);
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];
a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A320534 A012892 A013071 * A204432 A139004 A074951
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Jan 26 2009
STATUS
approved