login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155755
Triangle T(n, k) = A143491(n+2, k+2) + A143491(n+2, n-k+2), read by rows.
1
2, 3, 3, 7, 10, 7, 25, 35, 35, 25, 121, 168, 142, 168, 121, 721, 1064, 735, 735, 1064, 721, 5041, 8055, 5399, 3330, 5399, 8055, 5041, 40321, 69299, 49371, 22449, 22449, 49371, 69299, 40321, 362881, 663740, 509830, 223300, 109298, 223300, 509830, 663740, 362881
OFFSET
0,1
COMMENTS
This symmetric summation of the triangle A143491 is equivalent to the coefficient [x^m] (p_n(x) + x^n*p_n(1/x)) of the polynomials defined in A143491 plus their reverses.
FORMULA
T(n, k) = A143491(n+2, k+2) + A143491(n+2, n-k+2).
Sum_{k=0..n} T(n, k) = (n+2)!.
EXAMPLE
Triangle begins as:
2;
3, 3;,
7, 10, 7;
25, 35, 35, 25;
121, 168, 142, 168, 121;
721, 1064, 735, 735, 1064, 721;
5041, 8055, 5399, 3330, 5399, 8055, 5041;
40321, 69299, 49371, 22449, 22449, 49371, 69299, 40321;
362881, 663740, 509830, 223300, 109298, 223300, 509830, 663740, 362881;
MATHEMATICA
(* First program *)
q[x_, n_]:= Product[x +n-i+1, {i, 0, n-1}];
p[x_, n_]:= q[x, n] + x^n*q[1/x, n];
Table[CoefficientList[p[x, n], x], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Jun 06 2021 *)
(* Second program *)
A143491[n_, k_]:= (n-2)!*Sum[(n-k-j+1)*Abs[StirlingS1[j+k-2, k-2]]/(j+k-2)!, {j, 0, n-k}];
A155755[n_, k_]:= A143491[n+2, k+2] + A143491[n+2, n-k+2];
Table[A155755[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 06 2021 *)
PROG
(Sage)
def A143491(n, k): return factorial(n-2)*sum( (n-k-j+1)*stirling_number1(j+k-2, k-2)/factorial(j+k-2) for j in (0..n-k) )
def A155755(n, k): return A143491(n+2, k+2) + A143491(n+2, n-k+2)
flatten([[A155755(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 06 2021
CROSSREFS
Cf. A143491.
Sequence in context: A045683 A343031 A157531 * A080088 A098715 A167886
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jan 26 2009
STATUS
approved