login
A155755
Triangle T(n, k) = A143491(n+2, k+2) + A143491(n+2, n-k+2), read by rows.
1
2, 3, 3, 7, 10, 7, 25, 35, 35, 25, 121, 168, 142, 168, 121, 721, 1064, 735, 735, 1064, 721, 5041, 8055, 5399, 3330, 5399, 8055, 5041, 40321, 69299, 49371, 22449, 22449, 49371, 69299, 40321, 362881, 663740, 509830, 223300, 109298, 223300, 509830, 663740, 362881
OFFSET
0,1
COMMENTS
This symmetric summation of the triangle A143491 is equivalent to the coefficient [x^m] (p_n(x) + x^n*p_n(1/x)) of the polynomials defined in A143491 plus their reverses.
FORMULA
T(n, k) = A143491(n+2, k+2) + A143491(n+2, n-k+2).
Sum_{k=0..n} T(n, k) = (n+2)!.
EXAMPLE
Triangle begins as:
2;
3, 3;,
7, 10, 7;
25, 35, 35, 25;
121, 168, 142, 168, 121;
721, 1064, 735, 735, 1064, 721;
5041, 8055, 5399, 3330, 5399, 8055, 5041;
40321, 69299, 49371, 22449, 22449, 49371, 69299, 40321;
362881, 663740, 509830, 223300, 109298, 223300, 509830, 663740, 362881;
MATHEMATICA
(* First program *)
q[x_, n_]:= Product[x +n-i+1, {i, 0, n-1}];
p[x_, n_]:= q[x, n] + x^n*q[1/x, n];
Table[CoefficientList[p[x, n], x], {n, 0, 12}]//Flatten (* modified by G. C. Greubel, Jun 06 2021 *)
(* Second program *)
A143491[n_, k_]:= (n-2)!*Sum[(n-k-j+1)*Abs[StirlingS1[j+k-2, k-2]]/(j+k-2)!, {j, 0, n-k}];
A155755[n_, k_]:= A143491[n+2, k+2] + A143491[n+2, n-k+2];
Table[A155755[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 06 2021 *)
PROG
(Sage)
def A143491(n, k): return factorial(n-2)*sum( (n-k-j+1)*stirling_number1(j+k-2, k-2)/factorial(j+k-2) for j in (0..n-k) )
def A155755(n, k): return A143491(n+2, k+2) + A143491(n+2, n-k+2)
flatten([[A155755(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 06 2021
CROSSREFS
Cf. A143491.
Sequence in context: A045683 A343031 A157531 * A080088 A098715 A167886
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jan 26 2009
STATUS
approved