login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153057
a(0)=3; a(n) = n^2 + a(n-1) for n>0.
6
3, 4, 8, 17, 33, 58, 94, 143, 207, 288, 388, 509, 653, 822, 1018, 1243, 1499, 1788, 2112, 2473, 2873, 3314, 3798, 4327, 4903, 5528, 6204, 6933, 7717, 8558, 9458, 10419, 11443, 12532, 13688, 14913, 16209, 17578, 19022, 20543, 22143, 23824, 25588
OFFSET
0,1
FORMULA
From R. J. Mathar, Jan 17 2009: (Start)
G.f.: (3-8*x + 10*x^2 - 3*x^3)/(1 - x)^4.
a(n) = 3+A000330(n). (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, May 09 2017
MATHEMATICA
a=3; lst={}; Do[a=n^2+a; AppendTo[lst, a], {n, 0, 5!}]; lst
CoefficientList[Series[(3 - 8 x + 10 x^2 - 3 x^3) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, May 09 2017 *)
PROG
(Magma) I:=[3, 4, 8, 17]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, May 09 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Added indices to definition. Corrected offset R. J. Mathar, Jan 17 2009
STATUS
approved