login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023202 Numbers n such that n and n + 8 both prime. 32
3, 5, 11, 23, 29, 53, 59, 71, 89, 101, 131, 149, 173, 191, 233, 263, 269, 359, 389, 401, 431, 449, 479, 491, 563, 569, 593, 599, 653, 683, 701, 719, 743, 761, 821, 911, 929, 983, 1013, 1031, 1061, 1109, 1163, 1193, 1223, 1229, 1283, 1289, 1319, 1373, 1439 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Matt C. Anderson, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)

A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.

Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.

Eric Weisstein's World of Mathematics, Twin Primes

MAPLE

select(n-> isprime(n) and isprime(n+8), [`$`(1..1500)]); # G. C. Greubel, Feb 07 2020

MATHEMATICA

Select[Range[1500], PrimeQ[#] && PrimeQ[#+8]&] (* Vladimir Joseph Stephan Orlovsky, Aug 29 2008 *)

PROG

(MAGMA) [n: n in [0..1500] | IsPrime(n) and IsPrime(n+8)]; // Vincenzo Librandi, Nov 20 2010

(PARI) is(n)=isprime(n)&&isprime(n+8) \\ Charles R Greathouse IV, Jul 01 2013

(Sage) [n for n in (1..1500) if is_prime(n) and is_prime(n+8)] # G. C. Greubel, Feb 07 2020

(GAP) Filtered([1..1500], k-> IsPrime(k) and IsPrime(k+8)) # G. C. Greubel, Feb 07 2020

CROSSREFS

Disjoint union of A007530, A031926, A049437, A049438.

Cf. A046134, A049436, A046138, A015915.

Sequence in context: A275785 A106901 A154550 * A049436 A117010 A056874

Adjacent sequences:  A023199 A023200 A023201 * A023203 A023204 A023205

KEYWORD

nonn,easy,changed

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 20:08 EST 2020. Contains 332110 sequences. (Running on oeis4.)