login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049437 Primes p such that p+2 and p+8 are also primes but p+6 is not. 11
3, 29, 59, 71, 149, 269, 431, 569, 599, 1031, 1061, 1229, 1289, 1319, 1451, 1619, 2129, 2339, 2381, 2549, 2711, 2789, 3299, 3539, 4019, 4049, 4091, 4649, 4721, 5099, 5441, 5519, 5639, 5741, 5849, 6269, 6359, 6569, 6701, 6959, 7211 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

p+4 is not prime here except for p=3.

LINKS

Iain Fox, Table of n, a(n) for n = 1..10000 (first 1000 terms from R. J. Mathar)

EXAMPLE

p=29 is the smallest prime so that p, p+2 and p+8 are consecutive primes.

MAPLE

select(p -> isprime(p) and isprime(p+2) and isprime(p+8) and not isprime(p+6), [3, seq(i, i=5..10000, 6)]); # Robert Israel, Nov 20 2017

MATHEMATICA

{3}~Join~Select[Partition[Prime@ Range[10^3], 3, 1], Differences@ # == {2, 6} &][[All, 1]] (* Michael De Vlieger, Nov 20 2017 *)

PROG

(MAGMA) [p: p in PrimesUpTo(8000)| IsPrime(p+2) and IsPrime(p+8) and not IsPrime(p+6) ] // Vincenzo Librandi, Jan 28 2011

(PARI) lista(nn) = forprime(p=3, nn, if(isprime(p+2) && isprime(p+8) && !isprime(p+6), print1(p, ", "))) \\ Iain Fox, Nov 20 2017

CROSSREFS

Cf. A007530, A023202, A031926, A046134, A046138, A049436, A049438, A046138.

Subsequence of A001359. - R. J. Mathar, Feb 10 2013

Sequence in context: A107189 A059761 A210360 * A171409 A220953 A031912

Adjacent sequences:  A049434 A049435 A049436 * A049438 A049439 A049440

KEYWORD

nonn

AUTHOR

Labos Elemer

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 17:51 EDT 2021. Contains 345419 sequences. (Running on oeis4.)