login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049435
Stirling numbers of second kind: 10th column of Stirling2 triangle A008277.
5
1, 55, 1705, 39325, 752752, 12662650, 193754990, 2758334150, 37112163803, 477297033785, 5917584964655, 71187132291275, 835143799377954, 9593401297313460, 108254081784931500, 1203163392175387500, 13199555372846848005, 143197070509423605675
OFFSET
10,2
REFERENCES
See A000771.
LINKS
Index entries for linear recurrences with constant coefficients, signature (55,-1320,18150,-157773,902055,-3416930,8409500,-12753576,10628640,-3628800).
FORMULA
G.f.: x^10/Product_{k=1..10} (1-k*x).
E.g.f.: ((exp(x)-1)^10)/10!.
a(n) = det(|s(i+10,j+9)|, 1 <= i,j <= n-10), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013
MATHEMATICA
lst={}; Do[f=StirlingS2[n, 10]; AppendTo[lst, f], {n, 10, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
CoefficientList[Series[1/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x) (1 - 5 x) (1 - 6 x) (1 - 7 x) (1 - 8 x) (1 - 9 x) (1 - 10 x)), {x, 0, 25}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
StirlingS2[Range[10, 35], 10] (* Harvey P. Dale, Nov 07 2020 *)
CROSSREFS
KEYWORD
easy,nonn
STATUS
approved