login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000481 Stirling numbers of the second kind, S(n,5).
(Formerly M4981 N2141)
8
1, 15, 140, 1050, 6951, 42525, 246730, 1379400, 7508501, 40075035, 210766920, 1096190550, 5652751651, 28958095545, 147589284710, 749206090500, 3791262568401, 19137821912055, 96416888184100, 485000783495250, 2436684974110751, 12230196160292565, 61338207158409090 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,2

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.

F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=5..200

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 348

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Kruchinin Vladimir Victorovich, Composition of ordinary generating functions, arXiv:1009.2565

FORMULA

a(n) = A008277(n, 5) (Stirling2 triangle).

G.f.: x^5/product(1-k*x, k=1..5).

E.g.f.: ((exp(x)-1)^5)/5!.

a(n) = sum(sum(binomial(k,r)*(15)^(k-r)*sum((-85)^(r-m)*binomial(r,m)*sum(binomial(m,j)*binomial(j,n-m-k-j-r)*(225)^(m-j)*(-274)^(r+m+k+2*j-n)*(120)^(n-m-k-j-r),j,0,m),m,0,r),r,0,k),k,1,n), n>0. - Vladimir Kruchinin, Aug 30 2010

a(n) = det(|s(i+5,j+4)|, 1 <= i,j <= n-5), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013

MAPLE

A000481:=-1/(z-1)/(4*z-1)/(-1+3*z)/(2*z-1)/(5*z-1); # conjectured by Simon Plouffe in his 1992 dissertation

a := n -> (1-4^n+2*(3^n-2^n)+5^(n-1))/24:

seq(a(n), n=5..29); # Peter Luschny, May 09 2015

MATHEMATICA

lst={}; Do[f=StirlingS2[n, 5]; AppendTo[lst, f], {n, 5, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)

CoefficientList[Series[1/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x) (1 - 5 x)), {x, 0, 25}], x]  (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)

CROSSREFS

Cf. A008277.

Sequence in context: A035330 A002803 A056281 * A215765 A055903 A026859

Adjacent sequences:  A000478 A000479 A000480 * A000482 A000483 A000484

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Sean A. Irvine, Nov 14 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 1 06:07 EDT 2015. Contains 261261 sequences.