login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000481 Stirling numbers of the second kind, S(n,5).
(Formerly M4981 N2141)
14
1, 15, 140, 1050, 6951, 42525, 246730, 1379400, 7508501, 40075035, 210766920, 1096190550, 5652751651, 28958095545, 147589284710, 749206090500, 3791262568401, 19137821912055, 96416888184100, 485000783495250, 2436684974110751, 12230196160292565, 61338207158409090 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,2

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.

F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=5..200

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 348

Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992

FORMULA

a(n) = A008277(n, 5) (Stirling2 triangle).

G.f.: x^5/product(1-k*x, k=1..5).

E.g.f.: ((exp(x)-1)^5)/5!.

a(n) = sum(sum(binomial(k,r)*(15)^(k-r)*sum((-85)^(r-m)*binomial(r,m)*sum(binomial(m,j)*binomial(j,n-m-k-j-r)*(225)^(m-j)*(-274)^(r+m+k+2*j-n)*(120)^(n-m-k-j-r),j,0,m),m,0,r),r,0,k),k,1,n), n>0. - Vladimir Kruchinin, Aug 30 2010

a(n) = det(|s(i+5,j+4)|, 1 <= i,j <= n-5), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013

MAPLE

A000481:=-1/(z-1)/(4*z-1)/(-1+3*z)/(2*z-1)/(5*z-1); # conjectured by Simon Plouffe in his 1992 dissertation

a := n -> (1-4^n+2*(3^n-2^n)+5^(n-1))/24:

seq(a(n), n=5..29); # Peter Luschny, May 09 2015

MATHEMATICA

lst={}; Do[f=StirlingS2[n, 5]; AppendTo[lst, f], {n, 5, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)

CoefficientList[Series[1/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x) (1 - 5 x)), {x, 0, 25}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)

StirlingS2[Range[5, 30], 5] (* Harvey P. Dale, May 15 2017 *)

CROSSREFS

Cf. A008277.

Sequence in context: A346977 A354398 A056281 * A327506 A346955 A346920

Adjacent sequences: A000478 A000479 A000480 * A000482 A000483 A000484

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Sean A. Irvine, Nov 14 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 19:21 EDT 2023. Contains 361528 sequences. (Running on oeis4.)