OFFSET
0,4
COMMENTS
Also, number of Latin squares of order n with first row 1,2,...,n.
Also number of fixed diagonal Latin squares of order n. - Eric W. Weisstein, Dec 18 2005
Also maximum number of Latin squares of order n such that no two of them have all the same rows (respectively, columns). - Rick L. Shepherd, Mar 01 2008
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 660.
Denes and Keedwell, Latin Squares and Applications, Academic Press 1974.
LINKS
B. D. McKay, A. Meynert and W. Myrvold, Small Latin Squares, Quasigroups and Loops, J. Combin. Designs 15 (2007), no. 2, 98-119.
B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Combinat. 9 (2005) 335-344.
Artur Schaefer, Endomorphisms of The Hamming Graph and Related Graphs, arXiv preprint arXiv:1602.02186 [math.CO], 2016.
D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
E. I. Vatutin, V. S. Titov, O. S. Zaikin, S. E. Kochemazov, S. U. Valyaev, A. D. Zhuravlev, M. O. Manzuk, Using grid systems for enumerating combinatorial objects with example of diagonal Latin squares, Information technologies and mathematical modeling of systems (2016), pp. 154-157. (in Russian)
Vatutin E.I., Zaikin O.S., Zhuravlev A.D., Manzyuk M.O., Kochemazov S.E., Titov V.S., Using grid systems for enumerating combinatorial objects on example of diagonal Latin squares. CEUR Workshop proceedings. Selected Papers of the 7th International Conference Distributed Computing and Grid-technologies in Science and Education. 2017. Vol. 1787. pp. 486-490. urn:nbn:de:0074-1787-5.
Eric Weisstein's World of Mathematics, Latin Square
CROSSREFS
KEYWORD
nonn,hard,nice
AUTHOR
EXTENSIONS
a(11) (from the McKay-Wanless article) from Richard Bean, Feb 17 2004
STATUS
approved