The OEIS is supported by the many generous donors to the OEIS Foundation.


(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000479 Number of 1-factorizations of K_{n,n}. 10
1, 1, 1, 2, 24, 1344, 1128960, 12198297600, 2697818265354240, 15224734061278915461120, 2750892211809148994633229926400, 19464657391668924966616671344752852992000 (list; graph; refs; listen; history; text; internal format)
Also, number of Latin squares of order n with first row 1,2,...,n.
Also number of fixed diagonal Latin squares of order n. - Eric W. Weisstein, Dec 18 2005
Also maximum number of Latin squares of order n such that no two of them have all the same rows (respectively, columns). - Rick L. Shepherd, Mar 01 2008
CRC Handbook of Combinatorial Designs, 1996, p. 660.
Denes and Keedwell, Latin Squares and Applications, Academic Press 1974.
B. D. McKay, A. Meynert and W. Myrvold, Small Latin Squares, Quasigroups and Loops, J. Combin. Designs 15 (2007), no. 2, 98-119.
B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Combinat. 9 (2005) 335-344.
Artur Schaefer, Endomorphisms of The Hamming Graph and Related Graphs, arXiv preprint arXiv:1602.02186, 2016.
D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
E. I. Vatutin, V. S. Titov, O. S. Zaikin, S. E. Kochemazov, S. U. Valyaev, A. D. Zhuravlev, M. O. Manzuk, Using grid systems for enumerating combinatorial objects with example of diagonal Latin squares, Information technologies and mathematical modeling of systems (2016), pp. 154-157. (in Russian)
Vatutin E.I., Zaikin O.S., Zhuravlev A.D., Manzyuk M.O., Kochemazov S.E., Titov V.S., Using grid systems for enumerating combinatorial objects on example of diagonal Latin squares. CEUR Workshop proceedings. Selected Papers of the 7th International Conference Distributed Computing and Grid-technologies in Science and Education. 2017. Vol. 1787. pp. 486-490. urn:nbn:de:0074-1787-5.
Eric Weisstein's World of Mathematics, Latin Square
a(n) = A000315(n)*(n-1)! = A002860(n)/n!.
See A040082 and A264603 for other versions.
Sequence in context: A350792 A028365 A094050 * A181231 A111427 A081955
a(11) (from the McKay-Wanless article) from Richard Bean, Feb 17 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 05:06 EDT 2023. Contains 363139 sequences. (Running on oeis4.)