Table of n, a(n) for n=1..11.
Ronald Alter, Research Problems: How Many Latin Squares are There?, Amer. Math. Monthly 82 (1975), no. 6, 632634. MR1537769
S. E. Bammel and J. Rothstein, The number of 9x9 Latin squares, Discrete Math., 11 (1975), 9395.
Jeranfer Bermúdez, Richard García, Reynaldo López and Lourdes Morales, Some Properties of Latin Squares, Laboratorio Emmy Noether, 2009.
J. W. Brown, Enumeration of Latin squares with application to order 8, J. Combin. Theory, 5 (1968), 177184.
E. N. Gilbert, Latin squares which contain no repeated digrams, SIAM Rev. 7 1965 189198. MR0179095 (31 #3346). Mentions this sequence.  N. J. A. Sloane, Mar 15 2014
A.A. A. Jucys, The number of distinct Latin squares as a grouptheoretical constant, J. Combinatorial Theory Ser. A 20 (1976), no. 3, 265272. MR0419259 (54 #7283)
Dieter Jungnickel, Vladimir D. Tonchev, Counting Steiner triple systems with classical parameters and prescribed rank, arXiv:1709.06044 [math.CO], 2017.
B. D. McKay and E. Rogoyski, Latin squares of order ten, Electron. J. Combinatorics, 2 (1995) #N3.
B. D. McKay and I. M. Wanless, On the number of Latin squares. Preprint 2004.
B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Combinat. 9 (2005) 335344.
J. Shao and W. Wei, A formula for the number of Latin squares., Discrete Mathematics 110 (1992) 293296.
Minjia Shi, Li Xu, Denis S. Krotov, The number of the nonfullrank Steiner triple systems, arXiv:1806.00009 [math.CO], 2018.
T. Sillke, How many Latin Squares of orderN are there?
D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204215.
Eric Weisstein's World of Mathematics, Latin Square.
M. B. Wells, The number of Latin squares of order 8, J. Combin. Theory, 3 (1967), 9899.
Krasimir Yordzhev, The bitwise operations in relation to obtaining Latin squares, arXiv preprint arXiv:1605.07171 [cs.OH], 2016.
Index entries for sequences related to Latin squares and rectangles
Index entries for sequences related to quasigroups
