login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002861
Number of connected functions (or mapping patterns) on n unlabeled points, or number of rings and branches with n edges.
(Formerly M1182 N0455)
18
1, 2, 4, 9, 20, 51, 125, 329, 862, 2311, 6217, 16949, 46350, 127714, 353272, 981753, 2737539, 7659789, 21492286, 60466130, 170510030, 481867683, 1364424829, 3870373826, 10996890237, 31293083540, 89173833915, 254445242754, 726907585652, 2079012341822
OFFSET
1,2
COMMENTS
A000081 + A027852 + A029852 + A029853 + A029868 + ... - Geoffrey Critzer, Oct 12 2012
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.6.
R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.399.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 500 terms from C. G. Bower)
A. L. Agore, A. Chirvasitu, and G. Militaru, The set-theoretic Yang-Baxter equation, Kimura semigroups and functional graphs, arXiv:2303.06700 [math.QA], 2023.
C. G. Bower, Transforms (2)
Oscar Defrain, Antonio E. Porreca and Ekaterina Timofeeva, Polynomial-delay generation of functional digraphs up to isomorphism, Disc. Appl. Math., vol 357 (2024), pp. 24-33.
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; see page 480
R. K. Guy, Letter to N. J. A. Sloane, 1988-04-12 (annotated scanned copy)
FORMULA
CIK transform of A000081.
MAPLE
spec2861 := [B, {A=Prod(Z, Set(A)), B=Cycle(A)}, unlabeled]; [seq(combstruct[count](spec2861, size=n), n=1..27)];
MATHEMATICA
Needs["Combinatorica`"];
nn = 30; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2 k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n - 1, i] i, {i, 1, n - 1}]/(n - 1); rt = Table[a[i], {i, 1, nn}]; Apply[Plus, Table[Take[CoefficientList[CycleIndex[CyclicGroup[n], s] /. Table[s[j] -> Table[Sum[rt[[i]] x^(k * i), {i, nn}], {k, 1, nn}][[j]], {j, nn}], x], nn], {n, 30}]] (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
M = 66; A = Table[1, {M + 1}]; For[n = 1, n <= M, n++, A[[n + 1]] = 1/n * Sum[Sum[d * A[[d]], {d, Divisors[k]}] * A[[n - k + 1]], {k, n}]]; A81 = {0} ~ Join ~ A; H[t_] = A81.t^Range[0, Length[A81] - 1]; L = Sum[EulerPhi[j]/j * Log[1/(1 - H[x^j])], {j, M}] + O[x]^M; CoefficientList[L, x] // Rest (* Jean-François Alcover, Dec 28 2019, after Joerg Arndt *)
PROG
(PARI)
N=66; A=vector(N+1, j, 1);
for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
A000081=concat([0], A);
H(t)=subst(Ser(A000081, 't), 't, t);
x='x+O('x^N);
L=sum(j=1, N, eulerphi(j)/j * log(1/(1-H(x^j))));
Vec(L)
\\ Joerg Arndt, Jul 10 2014
CROSSREFS
Row sums of A339428.
Sequence in context: A134955 A171887 A027881 * A363203 A032200 A130969
KEYWORD
nonn,nice
EXTENSIONS
More terms from Philippe Flajolet and Paul Zimmermann, Mar 15 1996
STATUS
approved