OFFSET
1,2
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.6.
R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.399.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 500 terms from C. G. Bower)
A. L. Agore, A. Chirvasitu, and G. Militaru, The set-theoretic Yang-Baxter equation, Kimura semigroups and functional graphs, arXiv:2303.06700 [math.QA], 2023.
C. G. Bower, Transforms (2)
Oscar Defrain, Antonio E. Porreca and Ekaterina Timofeeva, Polynomial-delay generation of functional digraphs up to isomorphism, Disc. Appl. Math., vol 357 (2024), pp. 24-33.
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; see page 480
R. K. Guy, Letter to N. J. A. Sloane, 1988-04-12 (annotated scanned copy)
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 118
FORMULA
CIK transform of A000081.
MAPLE
spec2861 := [B, {A=Prod(Z, Set(A)), B=Cycle(A)}, unlabeled]; [seq(combstruct[count](spec2861, size=n), n=1..27)];
MATHEMATICA
Needs["Combinatorica`"];
nn = 30; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2 k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n - 1, i] i, {i, 1, n - 1}]/(n - 1); rt = Table[a[i], {i, 1, nn}]; Apply[Plus, Table[Take[CoefficientList[CycleIndex[CyclicGroup[n], s] /. Table[s[j] -> Table[Sum[rt[[i]] x^(k * i), {i, nn}], {k, 1, nn}][[j]], {j, nn}], x], nn], {n, 30}]] (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
M = 66; A = Table[1, {M + 1}]; For[n = 1, n <= M, n++, A[[n + 1]] = 1/n * Sum[Sum[d * A[[d]], {d, Divisors[k]}] * A[[n - k + 1]], {k, n}]]; A81 = {0} ~ Join ~ A; H[t_] = A81.t^Range[0, Length[A81] - 1]; L = Sum[EulerPhi[j]/j * Log[1/(1 - H[x^j])], {j, M}] + O[x]^M; CoefficientList[L, x] // Rest (* Jean-François Alcover, Dec 28 2019, after Joerg Arndt *)
PROG
(PARI)
N=66; A=vector(N+1, j, 1);
for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
A000081=concat([0], A);
H(t)=subst(Ser(A000081, 't), 't, t);
x='x+O('x^N);
L=sum(j=1, N, eulerphi(j)/j * log(1/(1-H(x^j))));
Vec(L)
\\ Joerg Arndt, Jul 10 2014
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from Philippe Flajolet and Paul Zimmermann, Mar 15 1996
STATUS
approved