login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027852 Number of connected functions on n points with a loop of length 2. 19
0, 1, 1, 3, 6, 16, 37, 96, 239, 622, 1607, 4235, 11185, 29862, 80070, 216176, 586218, 1597578, 4370721, 12003882, 33077327, 91433267, 253454781, 704429853, 1962537755, 5479855546, 15332668869, 42983656210, 120716987723, 339596063606, 956840683968 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Number of unordered pairs of rooted trees with a total of n nodes.

Equivalently, the number of rooted trees on n+1 nodes where the root has degree 2.

Number of trees on n nodes rooted at an edge. - Washington Bomfim, Jul 06 2012

Guy (1988) calls these tadpole graphs. - N. J. A. Sloane, Nov 04 2014

Number of unicyclic graphs of n nodes with a cycle length of two (in other words a double edge). - Washington Bomfim, Dec 02 2020

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..2136

Washington Bomfim, Illustration of initial terms

R. K. Guy, Letter to N. J. A. Sloane, 1988-04-12 (annotated scanned copy) Includes illustrations for n <= 6.

R. J. Mathar, Topologically distinct sets of non-intersecting circles in the plane, arXiv:1603.00077 [math.CO] (2016), Eq. (75).

Index entries for sequences related to rooted trees

FORMULA

G.f.: A(x) = (B(x)^2 + B(x^2))/2 where B(x) is g.f. of A000081.

a(n) = Sum_{k=1..(n-1)/2}( f(k)*f(n-k) ) + [n mod 2 = 0] * ( f(n/2)^2+f(n/2) ) /2, where f(n) = A000081(n). - Washington Bomfim, Jul 06 2012 and Dec 01 2020

a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = A187770 = 0.43992401257102530404090339... . - Vaclav Kotesovec, Sep 12 2014

2*a(n) = A000106(n) + A000081(n/2), where A(.)=0 if the argument is non-integer. - R. J. Mathar, Jun 04 2020

MAPLE

with(numtheory): b:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= n-> (add(b(i) *b(n-i), i=0..n) +`if`(irem(n, 2)=0, b(n/2), 0))/2: seq(a(n), n=1..50);  # Alois P. Heinz, Aug 22 2008, revised Oct 07 2011

# second, re-usable version

A027852 := proc(N::integer)

    local dh, Nprime;

    dh := 0 ;

    for Nprime from 0 to N do

        dh := dh+A000081(Nprime)*A000081(N-Nprime) ;

    end do:

    if type(N, 'even') then

        dh := dh+A000081(N/2) ;

    end if;

    dh/2 ;

end proc: # R. J. Mathar, Mar 06 2017

MATHEMATICA

Needs["Combinatorica`"]; nn = 30; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2 k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n - 1, i] i, {i, 1, n - 1}]/(n - 1); rt = Table[a[i], {i, 1, nn}]; Take[CoefficientList[CycleIndex[DihedralGroup[2], s] /. Table[s[j] -> Table[Sum[rt[[i]] x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], {2, nn}]  (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)

b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d b[d], {d, Divisors[j]}] b[n-j], {j, 1, n-1}])/(n-1)];

a[n_] := (Sum[b[i] b[n-i], {i, 0, n}] + If[Mod[n, 2] == 0, b[n/2], 0])/2;

Table[a[n], {n, 1, 50}] (* Jean-Fran├žois Alcover, Oct 30 2018, after Alois P. Heinz *)

PROG

(PARI) seq(max_n)= { my(V = f = vector(max_n), i=1, s); f[1]=1;

for(j=1, max_n - 1, f[j+1] = 1/j * sum(k=1, j, sumdiv(k, d, d * f[d]) * f[j-k+1]));

for(n = 1, max_n, s = sum(k = 1, (n-1)/2, ( f[k] * f[n-k] ));

if(n % 2 == 1, V[i] = s, V[i] = s + (f[n/2]^2 + f[n/2])/2); i++); V };

\\ Washington Bomfim, Jul 06 2012 and Dec 01 2020

CROSSREFS

Column 2 of A033185 (forests of rooted trees), A217781 (unicyclic graphs), A339303 (unoriented linear forests) and A339428 (connected functions).

Cf. A000081, A000106, A000226, A000631, A001372, A002861.

Sequence in context: A293993 A072824 A089406 * A203068 A321229 A114410

Adjacent sequences:  A027849 A027850 A027851 * A027853 A027854 A027855

KEYWORD

nonn

AUTHOR

Christian G. Bower, Dec 14 1997

EXTENSIONS

Edited by Christian G. Bower, Feb 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 13:44 EDT 2021. Contains 345417 sequences. (Running on oeis4.)