OFFSET
1,4
COMMENTS
Also, number of multigraphs of k components, n nodes, and no cycles except one loop in each component. See link below to have a picture showing the bijection between rooted forests and multigraphs of this kind. - Washington Bomfim, Sep 04 2010
Number of rooted trees with n+1 nodes and degree of the root is k.- Michael Somos, Aug 20 2018
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
R. J. Mathar, Topologically distinct sets of non-intersecting circles in the plane, arXiv:1603.00077 [math.CO] (2016), Table 2.
FORMULA
G.f.: 1/Product_{i>=1} (1-x*y^i)^A000081(i). - Vladeta Jovovic, Apr 28 2005
a(n, k) = sum over the partitions of n, 1M1 + 2M2 + ... + nMn, with exactly k parts, of Product_{i=1..n} binomial(A000081(i)+Mi-1, Mi). - Washington Bomfim, May 12 2005
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
4, 3, 1, 1;
9, 6, 3, 1, 1;
20, 16, 7, 3, 1, 1;
48, 37, 18, 7, 3, 1, 1;
115, 96, 44, 19, 7, 3, 1, 1;
286, 239, 117, 46, 19, 7, 3, 1, 1;
719, 622, 299, 124, 47, 19, 7, 3, 1, 1;
1842, 1607, 793, 320, 126, 47, 19, 7, 3, 1, 1;
MAPLE
with(numtheory):
t:= proc(n) option remember; local d, j; `if` (n<=1, n,
(add(add(d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1))
end:
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j) *
binomial(t(i)+j-1, j), j=0..min(n/i, p)))))
end:
a:= (n, k)-> b(n, n, k):
seq(seq(a(n, k), k=1..n), n=1..14); # Alois P. Heinz, Aug 20 2012
MATHEMATICA
nn=10; f[x_]:=Sum[a[n]x^n, {n, 0, nn}]; sol=SolveAlways[0 == Series[f[x]-x Product[1/(1-x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x]; a[0]=0; g=Table[a[n], {n, 1, nn}]/.sol//Flatten; h[list_]:=Select[list, #>0&]; Map[h, Drop[CoefficientList[Series[x Product[1/(1-y x^i)^g[[i]], {i, 1, nn}], {x, 0, nn}], {x, y}], 2]]//Grid (* Geoffrey Critzer, Nov 17 2012 *)
t[1] = 1; t[n_] := t[n] = Module[{d, j}, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n-j], {j, 1, n-1}]/(n-1)]; b[1, 1, 1] = 1; b[n_, i_, p_] := b[n, i, p] = If[p>n, 0, If[n == 0, 1, If[Min[i, p]<1, 0, Sum[b[n-i*j, i-1, p-j]*Binomial[t[i]+j-1, j], {j, 0, Min[n/i, p]}]]]]; a[n_, k_] := b[n, n, k]; Table[a[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved