OFFSET
0,5
COMMENTS
Two involutions x,y commute if x*y = y*x. Isomorphism is up to permutation of the elements of the (2n)-set. T(n,k) also gives the values for a (2n+1)-set.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
FORMULA
G.f. of column k: 1/((1 - x)*Product_{j=0..k-1} (1 - x^(2^j))^A022166(k,j+1)).
EXAMPLE
Array begins:
======================================================
n/k| 0 1 2 3 4 5 6 ...
---+--------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 1 2 4 8 16 32 64 ...
2 | 1 3 11 43 171 683 2731 ...
3 | 1 4 24 176 1376 10944 87424 ...
4 | 1 5 46 611 9281 146445 2334181 ...
5 | 1 6 80 1864 54384 1696352 53885632 ...
6 | 1 7 130 5161 285939 17562679 1110290303 ...
7 | 1 8 200 13184 1372224 165343616 20774749952 ...
8 | 1 9 295 31532 6101080 1436647664 358238974304 ...
...
PROG
(PARI) \\ B(n, k) is A022166.
B(n, k)={polcoef(x^k/prod(j=0, k, 1-2^j*x + O(x*x^n)), n)}
C(k, n) = Vec(1/prod(j=0, min(k-1, logint(n, 2)), (1 - x^(2^j) + O(x*x^n))^B(k, j+1), 1 - x + O(x*x^n)))
M(n, m=n) = Mat(vector(m+1, k, C(k-1, n)~))
{ my(A=M(7)); for(i=1, #A, print(A[i, ])) }
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 11 2023
STATUS
approved