login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362903
Array read by antidiagonals: T(n,k) is the number of nonisomorphic k-tuples of involutions on a (2n)-set that pairwise commute.
3
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 11, 4, 1, 1, 16, 43, 24, 5, 1, 1, 32, 171, 176, 46, 6, 1, 1, 64, 683, 1376, 611, 80, 7, 1, 1, 128, 2731, 10944, 9281, 1864, 130, 8, 1, 1, 256, 10923, 87424, 146445, 54384, 5161, 200, 9, 1, 1, 512, 43691, 699136, 2334181, 1696352, 285939, 13184, 295, 10, 1
OFFSET
0,5
COMMENTS
Two involutions x,y commute if x*y = y*x. Isomorphism is up to permutation of the elements of the (2n)-set. T(n,k) also gives the values for a (2n+1)-set.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
FORMULA
G.f. of column k: 1/((1 - x)*Product_{j=0..k-1} (1 - x^(2^j))^A022166(k,j+1)).
EXAMPLE
Array begins:
======================================================
n/k| 0 1 2 3 4 5 6 ...
---+--------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 1 2 4 8 16 32 64 ...
2 | 1 3 11 43 171 683 2731 ...
3 | 1 4 24 176 1376 10944 87424 ...
4 | 1 5 46 611 9281 146445 2334181 ...
5 | 1 6 80 1864 54384 1696352 53885632 ...
6 | 1 7 130 5161 285939 17562679 1110290303 ...
7 | 1 8 200 13184 1372224 165343616 20774749952 ...
8 | 1 9 295 31532 6101080 1436647664 358238974304 ...
...
PROG
(PARI) \\ B(n, k) is A022166.
B(n, k)={polcoef(x^k/prod(j=0, k, 1-2^j*x + O(x*x^n)), n)}
C(k, n) = Vec(1/prod(j=0, min(k-1, logint(n, 2)), (1 - x^(2^j) + O(x*x^n))^B(k, j+1), 1 - x + O(x*x^n)))
M(n, m=n) = Mat(vector(m+1, k, C(k-1, n)~))
{ my(A=M(7)); for(i=1, #A, print(A[i, ])) }
CROSSREFS
Columns k=0..3 are A000012, A000027(n-1), A001752, A362904.
Rows n=1..3 are A000079, A007583, A103334(n+1).
Sequence in context: A103323 A329332 A092056 * A103574 A112682 A033185
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 11 2023
STATUS
approved