login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022166 Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2. 63
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1395, 651, 63, 1, 1, 127, 2667, 11811, 11811, 2667, 127, 1, 1, 255, 10795, 97155, 200787, 97155, 10795, 255, 1, 1, 511, 43435, 788035, 3309747, 3309747, 788035, 43435, 511, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Also number of distinct binary linear [n,k] codes.

Row sums give A006116.

Central terms are A006098.

T(n,k) is the number of subgroups of the Abelian group (C_2)^n that have order 2^k. - Geoffrey Critzer, Mar 28 2016

REFERENCES

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

T. D. Noe, Rows n=0..50 of triangle, flattened

Octavio Alberto Agustín Aquino, Archimedes' quadrature of the parabola and minimal covers, arXiv:1602.05279 [math.CO], 2016.

J. A. de Azcarraga and J. A. Macfarlane, Group Theoretical Foundations of Fractional Supersymmetry arXiv:hep-th/9506177, 1995.

Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.

R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv:1409.3820 [math.NT], 2014.

Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.

D. Slepian, A class of binary signaling alphabets, Bell System Tech. J. 35 (1956), 203-234.

D. Slepian, Some further theory of group codes, Bell System Tech. J. 39 1960 1219-1252.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)

Eric W. Weisstein, q-Binomial Coefficient.

Wikipedia, q-binomial

Index entries for sequences related to binary linear codes

Index entries for sequences related to Gaussian binomial coefficients

FORMULA

G.f.: A(x,y) = Sum_{k>=0} y^k/Product_{j=0..k} (1 - 2^j*x). - Paul D. Hanna, Oct 28 2006

For k = 1,2,3,... the expansion of exp( Sum_{n >= 1} (2^(k*n) - 1)/(2^n - 1)*x^n/n ) gives the o.g.f. for the k-th diagonal of the triangle (k = 1 corresponds to the main diagonal). - Peter Bala, Apr 07 2015

T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017

T(m+n,k) = Sum_{i=0..k} q^((k-i)*(m-i)) * T(m,i) * T(n,k-i), q=2 (see the Sved link, page 337). - Werner Schulte, Apr 09 2019

EXAMPLE

Triangle begins:

  1;

  1,   1;

  1,   3,    1;

  1,   7,    7,     1;

  1,  15,   35,    15,     1;

  1,  31,  155,   155,    31,    1;

  1,  63,  651,  1395,   651,   63,   1;

  1, 127, 2667, 11811, 11811, 2667, 127, 1;

MAPLE

A005329 := proc(n)

   mul( 2^i-1, i=1..n) ;

end proc:

A022166 := proc(n, m)

   A005329(n)/A005329(n-m)/A005329(m) ;

end proc: # R. J. Mathar, Nov 14 2011

MATHEMATICA

Table[QBinomial[n, k, 2], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)

PROG

(PARI) T(n, k)=polcoeff(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n) \\ Paul D. Hanna, Oct 28 2006

(PARI) qp = matpascal(9, 2);

for(n=1, #qp, for(k=1, n, print1(qp[n, k], ", "))) \\ Gerald McGarvey, Dec 05 2009

(PARI) {q=2; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n<k, 0, T(n-1, k-1) + q^k*T(n-1, k))))};

for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 27 2018

(Sage) def T(n, k): return gaussian_binomial(n, k).subs(q=2) # Ralf Stephan, Mar 02 2014

(MAGMA) q:=2; [[k le 0 select 1 else (&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Nov 17 2018

CROSSREFS

Cf. A006516, A218449, A135950 (matrix inverse), A000225 (k=1), A006095 (k=2), A006096 (k=3).

Sequence in context: A136126 A046802 A184173 * A141689 A058669 A057004

Adjacent sequences:  A022163 A022164 A022165 * A022167 A022168 A022169

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 09:48 EST 2019. Contains 329968 sequences. (Running on oeis4.)