login
A359985
Triangle read by rows: T(n,k) is the number of quasi series-parallel matroids on [n] with rank k, 0 <= k <= n.
5
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1365, 651, 63, 1, 1, 127, 2667, 10941, 10941, 2667, 127, 1, 1, 255, 10795, 82215, 156597, 82215, 10795, 255, 1, 1, 511, 43435, 589135, 1988007, 1988007, 589135, 43435, 511, 1
OFFSET
0,5
COMMENTS
A quasi series-parallel matroid is a collection of series-parallel matroids. See the Ferroni/Larson reference for a precise definition.
The first six rows of this triangle are the same as A022166.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Luis Ferroni and Matt Larson, Kazhdan-Lusztig polynomials of braid matroids, arXiv:2303.02253 [math.CO], 2023.
Nicholas Proudfoot, Yuan Xu, and Ben Young, On the enumeration of series-parallel matroids, arXiv:2406.04502 [math.CO], 2024.
EXAMPLE
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 35, 15, 1;
1, 31, 155, 155, 31, 1;
1, 63, 651, 1365, 651, 63, 1;
1, 127, 2667, 10941, 10941, 2667, 127, 1;
...
PROG
(PARI) \\ Proposition 2.3, 2.8 in Ferroni/Larson, compare A140945.
T(n) = {[Vecrev(p) | p<-Vec(serlaplace(exp(x*(y+1) + y*intformal( serreverse(log(1 + x*y + O(x^n))/y + log(1 + x + O(x^n)) - x)))))]}
{ my(A=T(8)); for(i=1, #A, print(A[i])) }
CROSSREFS
Row sums are A359986.
Columns k=0..2 are A000012, A000225, A006095.
Sequence in context: A136126 A046802 A184173 * A022166 A141689 A058669
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Mar 08 2023
STATUS
approved