login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359984
Number of non-crossing antichain covers of {1,...,n} without singletons.
3
1, 0, 1, 5, 40, 372, 3815, 41652, 474980, 5591912, 67454545, 829438722, 10358083621, 131013535954, 1674940506728, 21608978465341, 280976960703472, 3678460005228692, 48446069275681169, 641429612434785006, 8532711384899213885, 113988520118626013998
OFFSET
0,4
COMMENTS
An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.
All sets in the antichain include at least two vertices.
LINKS
FORMULA
Inverse binomial transform of A324167.
G.f.: 1 + x^2*F(x)^2 - 3*x^3*F(x)^3 where F(x) satisfies F(x) = 1 + (4*x + x^2)*F(x)^2 - 3*x^2*(1 + x)*F(x)^3 = 1 +4*x +30*x^2 +273*x^3 +2770*x^4 +30059*x^5+....
a(n) >= A324169(n).
Conjecture D-finite with recurrence 8*n*(n-1)*a(n) -4*(n-1)*(56*n-145)*a(n-1) +4*(101*n^2-682*n+996)*a(n-2) +2*(6200*n^2-47903*n+88131)*a(n-3) +2*(26985*n^2-234056*n+491978)*a(n-4) +2*(62749*n^2-628865*n+1584314)*a(n-5) +(n-5)*(121577*n-667756)*a(n-6) +38285*(n-5)*(n-6)*a(n-7)=0. - R. J. Mathar, Mar 10 2023
EXAMPLE
The a(3) = 5 antichains:
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
The last 4 of these correspond to the graphs of A324169.
PROG
(PARI) seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(1 + x^2*f^2 - 3*x^3*f^3) } \\ Andrew Howroyd, Jan 20 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Jan 20 2023
STATUS
approved