OFFSET
0,4
COMMENTS
An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.
All sets in the antichain include at least two vertices.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..500
FORMULA
Inverse binomial transform of A324167.
G.f.: 1 + x^2*F(x)^2 - 3*x^3*F(x)^3 where F(x) satisfies F(x) = 1 + (4*x + x^2)*F(x)^2 - 3*x^2*(1 + x)*F(x)^3 = 1 +4*x +30*x^2 +273*x^3 +2770*x^4 +30059*x^5+....
a(n) >= A324169(n).
Conjecture D-finite with recurrence 8*n*(n-1)*a(n) -4*(n-1)*(56*n-145)*a(n-1) +4*(101*n^2-682*n+996)*a(n-2) +2*(6200*n^2-47903*n+88131)*a(n-3) +2*(26985*n^2-234056*n+491978)*a(n-4) +2*(62749*n^2-628865*n+1584314)*a(n-5) +(n-5)*(121577*n-667756)*a(n-6) +38285*(n-5)*(n-6)*a(n-7)=0. - R. J. Mathar, Mar 10 2023
EXAMPLE
The a(3) = 5 antichains:
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
The last 4 of these correspond to the graphs of A324169.
PROG
(PARI) seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(1 + x^2*f^2 - 3*x^3*f^3) } \\ Andrew Howroyd, Jan 20 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Jan 20 2023
STATUS
approved