login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359987
Number of edge cuts in the n-ladder graph P_2 X P_n.
3
1, 11, 105, 919, 7713, 63351, 514321, 4148839, 33347041, 267489431, 2143168305, 17160184519, 137349160833, 1099102033911, 8794224638161, 70360221445159, 562911076526881, 4503422288363351, 36027988077717105, 288226686123491719, 2305826176955087553, 18446667292472959671
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Edge Cut.
Eric Weisstein's World of Mathematics, Ladder Graph.
FORMULA
a(n) = 13*a(n-1) - 42*a(n-2) + 16*a(n-3) for n > 3.
a(n) = A013730(n-1) - A107839(n-1).
G.f.: x*(1 - 2*x + 4*x^2)/((1 - 8*x)*(1 - 5*x + 2*x^2)).
MATHEMATICA
LinearRecurrence[{13, -42, 16}, {1, 11, 105}, 25] (* Paolo Xausa, Jun 24 2024 *)
Table[2^(3 n - 2) + (((5 - Sqrt[17])/2)^n - ((5 + Sqrt[17])/2)^n)/Sqrt[17], {n, 20}] // Expand (* Eric W. Weisstein, Nov 03 2024 *)
CoefficientList[Series[-(1 - 2 x + 4 x^2)/((-1 + 8 x) (1 - 5 x + 2 x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Nov 03 2024 *)
PROG
(PARI) Vec((1 - 2*x + 4*x^2)/((1 - 8*x)*(1 - 5*x + 2*x^2)) + O(x^25))
CROSSREFS
Row 2 of A359990.
Cf. A013730, A107839, A356828 (vertex cuts), A359989.
Sequence in context: A158470 A372146 A163933 * A377641 A099839 A287834
KEYWORD
nonn,easy
AUTHOR
Andrew Howroyd, Jan 28 2023
STATUS
approved