login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356828
Number of vertex cuts in the n-ladder graph P_2 x P_n.
1
0, 2, 23, 147, 748, 3414, 14719, 61495, 252364, 1024938, 4137207, 16639339, 66775964, 267631726, 1071801407, 4290282671, 17168559452, 68692172578, 274811988823, 1099352487299, 4397662311948, 17591258505542, 70366504900671, 281469570617703, 1125886855379628
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Ladder Graph
Eric Weisstein's World of Mathematics, Vertex Cut
FORMULA
a(n) = 4^n + 2*n + (10 - LucasL(n + 3, 2))/4.
a(n) = 8*a(n-1) - 20*a(n-2) + 16*a(n-3) + a(n-4) - 4*a(n-5).
G.f.: x^2*(2+x)*(1+3*x)/((-1+x)^2*(-1+4*x)*(-1+2*x + x^2)).
a(n) = 2^(2*n) - A059020(n) - 1. - Pontus von Brömssen, Aug 30 2022
MATHEMATICA
Table[4^n + 2 n + (10 - LucasL[n + 3, 2])/4, {n, 20}]
LinearRecurrence[{8, -20, 16, 1, -4}, {0, 2, 23, 147, 748}, 20]
CoefficientList[Series[x (2 + x) (1 + 3 x)/((-1 + x)^2 (-1 + 4 x) (-1 + 2 x + x^2)), {x, 0, 20}], x]
CROSSREFS
Cf. A059020.
Sequence in context: A193981 A235594 A053299 * A220239 A189977 A130547
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Aug 30 2022
STATUS
approved