login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356825
a(n) is the least semiprime p*q such that p*q-i*(p+q) is prime for i from 1 to n but not n+1.
1
4, 9, 33, 65, 77, 161, 371, 38981, 2561, 568181
OFFSET
0,1
COMMENTS
2*10^9 < a(10) <= 368470943651.
EXAMPLE
a(3) = 65 = 5*13 because 65-18 = 47, 65-2*18 = 29, and 65-3*18 = 11 are prime but 65-4*18 = -7 is not, and 65 is the least semiprime that works.
MAPLE
V:= Array(0..9): V[0]:= 4: count:= 1:
for n from 9 by 2 while count < 10 do
if numtheory:-bigomega(n) = 2 then
P:= numtheory:-factorset(n);
if nops(P) = 2 then s:= P[1]+P[2] else s:= 2*P[1] fi;
for i from 1 while isprime(n-i*s) do od:
v:=i-1;
if V[v] = 0 then V[v]:= n; count:= count+1; fi
fi
od:
convert(V, list);
MATHEMATICA
primeQ[n_] := n > 0 && PrimeQ[n]; m[p_, q_] := Module[{i = 1}, While[primeQ[p*q - i*(p + q)], i++]; i]; seq[len_, nmax_] := Module[{s = Table[0, {len}], n = 1, c = 0, i, f}, While[c < len && n < nmax, f = FactorInteger[n]; If[f[[;; , 2]] == {2} || f[[;; , 2]] == {1, 1}, p = f[[1, 1]]; q = n/p; i = m[p, q]; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]]; n++]; s]; seq[10, 10^6] (* Amiram Eldar, Aug 29 2022 *)
CROSSREFS
Sequence in context: A320920 A368683 A048757 * A173659 A054433 A219769
KEYWORD
nonn,more
AUTHOR
J. M. Bergot and Robert Israel, Aug 29 2022
STATUS
approved