login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173659
a(n) = a(n-1) + 8a(n-2) - 3a(n-3) - 17a(n-4) + a(n-5) + 13a(n-6) + 4a(n-7) - 6a(n-8) - a(n-9).
0
0, 0, 0, 1, 4, 9, 33, 79, 250, 647, 1914, 5157, 14797, 40663, 115036, 319098, 896896, 2498663, 7002446, 19546383, 54706009, 152839003, 427510168, 1194858679, 3341293220, 9340298995, 26116085175, 73010960431, 204132824544, 570699926244, 1595594838888
OFFSET
0,5
FORMULA
G.f.: x^2(x - 1)(x^4 + 4x^3 - x^2 - 4x - 1)/((x^3 + x^2 - 1)(x^6 + 5x^5 - 9x^4 - 3x^3 + 7x^2 + x - 1))
a(n) = a(n-1) + 8a(n-2) - 3a(n-3) - 17a(n-4) + a(n-5) + 13a(n-6) + 4a(n-7) - 6a(n-8) - a(n-9). [M. F. Hasler, Nov 24 2010]
M = {{0, 1, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 1, 0, 0, 0, 0},
{1, 1, 0, 0, 0, 1, 0, 0, 0},
{1, 0, 0, 0, 0, 1, 1, 0, 0},
{0, 1, 0, 1, 0, 0, 0, 1, 0},
{0, 0, 1, 0, 1, 1, 0, 0, 1},
{0, 0, 0, 1, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 1, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 1, 1, 1, 0}};
v(n)=M.v(n-1) ; a(n) is the first component of v(n).
MATHEMATICA
M = {{0, 1, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 1, 0, 0, 0, 0},
{1, 1, 0, 0, 0, 1, 0, 0, 0},
{1, 0, 0, 0, 0, 1, 1, 0, 0},
{0, 1, 0, 1, 0, 0, 0, 1, 0},
{0, 0, 1, 0, 1, 1, 0, 0, 1},
{0, 0, 0, 1, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 1, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 1, 1, 1, 0}};
v[0] = {0, 0, 0, 0, 0, 0, 0, 0, 1};
v[n_] := v[n] = M.v[n - 1]
Table[v[n][[1]], {n, 0, 30}]
CROSSREFS
Sequence in context: A368683 A048757 A356825 * A054433 A219769 A308038
KEYWORD
nonn,easy,less
AUTHOR
Roger L. Bagula, Nov 24 2010
EXTENSIONS
Better name (using recurrence) from Joerg Arndt, Apr 06 2018
STATUS
approved