login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173661
Logarithmic derivative of the squares of the Fibonacci numbers (A007598, with offset).
0
1, 7, 16, 47, 121, 322, 841, 2207, 5776, 15127, 39601, 103682, 271441, 710647, 1860496, 4870847, 12752041, 33385282, 87403801, 228826127, 599074576, 1568397607, 4106118241, 10749957122, 28143753121, 73681302247, 192900153616, 505019158607
OFFSET
1,2
COMMENTS
The Lucas numbers (A000032) forms the logarithmic derivative of the Fibonacci numbers (A000045).
FORMULA
a(n) = Lucas(n)^2 for odd n, a(n) = Lucas(n)^2 - 2 for even n>0.
O.g.f.: x*(1+4*x-5*x^2+2*x^3)/((1-x^2)*(1-3*x+x^2)).
EXAMPLE
G.f.: L(x) = x + 7*x^2/2 + 16*x^3/3 + 47*x^4/4 + 121*x^5/5 +...
exp(L(x)) = 1 + x + 2^2*x^2 + 3^2*x^3 + 5^2*x^4 + 8^2*x^5 +...
PROG
(PARI) {a(n)=(fibonacci(n-1)+fibonacci(n+1))^2-2*((n-1)%2)}
(PARI) {a(n)=polcoeff(deriv(log(sum(m=0, n, fibonacci(m)^2*x^m)+x*O(x^n))), n)}
(PARI) {a(n)=polcoeff(x*(1+4*x-5*x^2+2*x^3)/((1-x^2)*(1-3*x+x^2+x*O(x^n))), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 24 2010
STATUS
approved