login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173663
Numbers k that divide the k-th partial sum of all semiprimes.
0
1, 2, 9, 19, 29, 44, 632, 11829, 19262, 25286, 26606, 29824, 247273, 310556, 491240, 1419166, 1601984, 9509238, 113333959, 220531559, 1034662494, 8323088842, 13102043650, 14053673678, 23505911647
OFFSET
1,2
COMMENTS
a(26) > 3*10^10. - Donovan Johnson, Nov 26 2010
FORMULA
{k: k | Sum_{i=1..k} A001358(i)}.
EXAMPLE
a(1) = 1 because 1 divides the first semiprime 4, trivially also the first partial sum of all semiprimes.
a(2) = 2 because A062198(2) = A001358(1) + A001358(2) = 4 + 6 = 10 is divisible by 2.
a(3) = 9 because A062198(9) = 126 = 2 * 3^2 * 7 is divisible by 9.
a(4) = 19 because A062198(19) = 532 = 2^2 * 7 * 19 is divisible by 19.
a(5) = 29 because A062198(29) = 1247 = 29 * 43 is divisible by 29.
a(6) = 44 because A062198(44) = 2904 = 44 * 66.
MATHEMATICA
SemiprimeQ[n_Integer] := If[Abs[n]<2, False, (2==Plus@@Transpose[FactorInteger[Abs[n]]][[2]])]; nn=10^6; sm=0; cnt=0; Reap[Do[If[SemiprimeQ[n], cnt++; sm=sm+n; If[Divisible[sm, cnt], Sow[cnt]]], {n, nn}]][[2, 1]]
PROG
(PARI) s=0; p=0; for(n=1, 1e9, until(bigomega(p++)==2, ); (s+=p)%n | print1(n", ")) \\ M. F. Hasler, Nov 24 2010
CROSSREFS
Sequence in context: A075340 A031316 A335051 * A294546 A135207 A274853
KEYWORD
nonn,more
AUTHOR
Jonathan Vos Post, Nov 24 2010
EXTENSIONS
Extended by T. D. Noe, Nov 24 2010
a(1)-a(17) double-checked and a(18) from M. F. Hasler, Nov 25 2010
a(19) from Ray Chandler, Nov 25 2010
a(20)-a(25) from Donovan Johnson, Nov 26 2010
STATUS
approved