login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356827
Expansion of e.g.f. exp(x * exp(3*x)).
1
1, 1, 7, 46, 361, 3436, 37729, 463366, 6280369, 93015352, 1491337441, 25684077706, 472217487625, 9221588527204, 190441412508481, 4143470377262806, 94663498086222049, 2264440394856702832, 56570146384760433217, 1472545685988162638722
OFFSET
0,3
FORMULA
G.f.: Sum_{k>=0} x^k / (1 - 3*k*x)^(k+1).
a(n) = Sum_{k=0..n} (3*k)^(n-k) * binomial(n,k).
MAPLE
A356827 := proc(n)
add((3*k)^(n-k) * binomial(n, k), k=0..n) ;
end proc:
seq(A356827(n), n=0..70) ; # R. J. Mathar, Dec 04 2023
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(3*x))))
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-3*k*x)^(k+1)))
(PARI) a(n) = sum(k=0, n, (3*k)^(n-k)*binomial(n, k));
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 29 2022
STATUS
approved