login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332852
Number of entries in the third cycles of all permutations of [n] when cycles are ordered by decreasing lengths.
3
1, 7, 46, 341, 2871, 26797, 275353, 3090544, 37652660, 495756306, 7015094802, 106125820737, 1710625964061, 29267936828691, 529655709670675, 10110999740354242, 203072647138681534, 4280118000323963708, 94470690960204259548, 2179212745888578818307
OFFSET
3,2
LINKS
Andrew V. Sills, Integer Partitions Probability Distributions, arXiv:1912.05306 [math.CO], 2019.
Wikipedia, Permutation
FORMULA
a(n) = Sum_{k=0..floor(n/3)} k * A350015(n,k). - Alois P. Heinz, Dec 12 2021
MAPLE
b:= proc(n, l) option remember; `if`(n=0, l[3], add((j-1)!*b(n-j,
sort([l[], j], `>`)[1..3])*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, [0$3]):
seq(a(n), n=3..23);
MATHEMATICA
b[n_, l_] := b[n, l] = If[n == 0, l[[3]], Sum[(j-1)! b[n-j, ReverseSort[ Append[l, j]][[1 ;; 3]]] Binomial[n - 1, j - 1], {j, 1, n}]];
a[n_] := b[n, {0, 0, 0}];
a /@ Range[3, 23] (* Jean-François Alcover, Mar 01 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A322384.
Cf. A350015.
Sequence in context: A365773 A067318 A072948 * A356827 A178962 A203267
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 26 2020
STATUS
approved