login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of entries in the third cycles of all permutations of [n] when cycles are ordered by decreasing lengths.
3

%I #14 Dec 12 2021 10:04:58

%S 1,7,46,341,2871,26797,275353,3090544,37652660,495756306,7015094802,

%T 106125820737,1710625964061,29267936828691,529655709670675,

%U 10110999740354242,203072647138681534,4280118000323963708,94470690960204259548,2179212745888578818307

%N Number of entries in the third cycles of all permutations of [n] when cycles are ordered by decreasing lengths.

%H Alois P. Heinz, <a href="/A332852/b332852.txt">Table of n, a(n) for n = 3..450</a>

%H Andrew V. Sills, <a href="https://arxiv.org/abs/1912.05306">Integer Partitions Probability Distributions</a>, arXiv:1912.05306 [math.CO], 2019.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>

%F a(n) = Sum_{k=0..floor(n/3)} k * A350015(n,k). - _Alois P. Heinz_, Dec 12 2021

%p b:= proc(n, l) option remember; `if`(n=0, l[3], add((j-1)!*b(n-j,

%p sort([l[], j], `>`)[1..3])*binomial(n-1, j-1), j=1..n))

%p end:

%p a:= n-> b(n, [0$3]):

%p seq(a(n), n=3..23);

%t b[n_, l_] := b[n, l] = If[n == 0, l[[3]], Sum[(j-1)! b[n-j, ReverseSort[ Append[l, j]][[1 ;; 3]]] Binomial[n - 1, j - 1], {j, 1, n}]];

%t a[n_] := b[n, {0, 0, 0}];

%t a /@ Range[3, 23] (* _Jean-François Alcover_, Mar 01 2020, after _Alois P. Heinz_ *)

%Y Column k=3 of A322384.

%Y Cf. A350015.

%K nonn

%O 3,2

%A _Alois P. Heinz_, Feb 26 2020