login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350015
Irregular triangle read by rows: T(n,k) is the number of n-permutations whose third-longest cycle has length exactly k; n >= 0, 0 <= k <= floor(n/3).
7
1, 1, 2, 5, 1, 17, 7, 74, 46, 394, 311, 15, 2484, 2241, 315, 18108, 17627, 4585, 149904, 152839, 57897, 2240, 1389456, 1460944, 705600, 72800, 14257440, 15326180, 8673060, 1660120, 160460640, 175421214, 110271546, 31600800, 1247400, 1965444480, 2177730270, 1469308698, 559402272, 55135080
OFFSET
0,3
COMMENTS
If the permutation has no third cycle, then its third-longest cycle is defined to have length 0.
LINKS
Steven Finch, Second best, Third worst, Fourth in line, arxiv:2202.07621 [math.CO], 2022.
FORMULA
Sum_{k=0..floor(n/3)} k * T(n,k) = A332852(n) for n >= 3. - Alois P. Heinz, Dec 12 2021
EXAMPLE
Triangle begins:
[0] 1;
[1] 1;
[2] 2;
[3] 5, 1;
[4] 17, 7;
[5] 74, 46;
[6] 394, 311, 15;
[7] 2484, 2241, 315;
[8] 18108, 17627, 4585;
[9] 149904, 152839, 57897, 2240;
...
MAPLE
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
b(n-j, sort([l[], j])[2..4])*binomial(n-1, j-1), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$3])):
seq(lprint(T(n)), n=0..14); # Alois P. Heinz, Dec 11 2021
MATHEMATICA
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[Append[l, j]][[2 ;; 4]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
T[n_] := With[{p = b[n, {0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
CROSSREFS
Column 0 gives 1 together with A000774.
Row sums give A000142.
Sequence in context: A352010 A350016 A162975 * A187244 A120294 A186766
KEYWORD
nonn,tabf
AUTHOR
Steven Finch, Dec 08 2021
STATUS
approved