login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350012
Number of ways to write n as 4*x^4 + y^2 + (z^2 + 4^w)/2 with x,y,z,w nonnegative integers.
3
1, 2, 1, 1, 4, 4, 1, 3, 5, 5, 3, 3, 4, 7, 3, 2, 6, 5, 2, 4, 6, 2, 2, 5, 4, 6, 2, 2, 6, 7, 2, 2, 6, 5, 5, 4, 3, 7, 5, 5, 8, 6, 2, 6, 9, 4, 2, 4, 5, 8, 3, 3, 5, 8, 3, 6, 5, 3, 6, 4, 6, 5, 6, 1, 10, 9, 2, 6, 11, 8, 1, 7, 5, 11, 6, 4, 7, 10, 3, 6, 10, 4, 8, 8, 6, 8, 6, 5, 11, 13, 5, 1, 11, 8, 3, 4, 4, 9, 7, 6
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 0.
This is a new refinement of Lagrange's four-square theorem since (x^2 + y^2)/2 = ((x+y)/2)^2 + ((x-y)/2)^2. We have verified the conjecture for n up to 10^6.
See also A349661 for a similar conjecture.
We also have some other conjectures of such a type.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167--190.
Zhi-Wei Sun, Restricted sums of four squares, Int. J. Number Theory 15(2019), 1863-1893. See also arXiv:1701.05868 [math.NT].
Zhi-Wei Sun, New Conjectures in Number Theory and Combinatorics (in Chinese), Harbin Institute of Technology Press, 2021.
EXAMPLE
a(1) = 4*0^4 + 0^2 + (1^2 + 4^0)/2.
a(3) = 1 with 3 = 4*0^4 + 1^2 + (0^2 + 4)/2.
a(4) = 1 with 4 = 4*0^4 + 0^2 + (2^2 + 4)/2.
a(7) = 1 with 7 = 4*1^4 + 1^2 + (0^2 + 4)/2.
a(71) = 1 with 71 = 4*1^4 + 3^2 + (10^2 + 4^2)/2.
a(92) = 1 with 92 = 4*1^4 + 6^2 + (10^2 + 4)/2.
a(167) = 1 with 167 = 4*1^4 + 9^2 + (10^2 + 4^3)/2.
a(271) = 1 with 271 = 4*1^4 + 11^2 + (6^2 + 4^4)/2.
a(316) = 1 with 316 = 4*1^4 + 4^2 + (24^2 + 4^2)/2.
a(4796) = 1 with 4796 = 4*5^4 + 36^2 + (44^2 + 4^3)/2.
a(14716) = 1 with 14716 = 4*5^4 + 4^2 + (156^2 + 4^3)/2.
a(24316) = 1 with 24316 = 4*3^4 + 84^2 + (184^2 + 4^2)/2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[SQ[2(n-4x^4-y^2)-4^z], r=r+1], {x, 0, ((n-1)/4)^(1/4)}, {y, 0, Sqrt[n-1-4x^4]}, {z, 0, Log[4, 2(n-4x^4-y^2)]}]; tab=Append[tab, r], {n, 1, 100}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 08 2021
STATUS
approved