login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A123521
Triangle read by rows: T(n,k)=number of tilings of a 2 X n grid with k pieces of 1 X 2 tiles (in horizontal position) and 2n-2k pieces of 1 X 1 tiles (0<=k<=n).
13
1, 1, 1, 2, 1, 1, 4, 4, 1, 6, 11, 6, 1, 1, 8, 22, 24, 9, 1, 10, 37, 62, 46, 12, 1, 1, 12, 56, 128, 148, 80, 16, 1, 14, 79, 230, 367, 314, 130, 20, 1, 1, 16, 106, 376, 771, 920, 610, 200, 25, 1, 18, 137, 574, 1444, 2232, 2083, 1106, 295, 30, 1, 1, 20, 172, 832, 2486, 4744, 5776, 4352, 1897, 420, 36
OFFSET
0,4
COMMENTS
Also the triangle of the coefficients of the squares of the Fibonacci polynomials. Row n has 1+2*floor(n/2) terms. Sum of terms in row n = (Fibonacci(n+1))^2 (A007598).
From Michael A. Allen, Jun 24 2020: (Start)
T(n,k) is the number of tilings of an n-board (a board with dimensions n X 1) using k (1/2, 1/2)-fence tiles and 2*(n-k) half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal). A (1/2, 1/2)-fence is a tile composed of two 1/2 X 1 pieces separated by a gap of width 1/2.
T(n,k) is the (n, (n-k))-th entry of the (1/(1-x^2), x/(1-x)^2) Riordan array.
(-1)^(n+k)*T(n,k) is the (n, (n-k))-th entry of the (1/(1-x^2), x/(1+x)^2) Riordan array (A158454). (End)
REFERENCES
Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
FORMULA
G.f.: G = (1-t*z)/((1+t*z)*(1-z-2*t*z+t^2*z^2)). G = 1/(1-g), where g = z+t^2*z^2+2*t*z^2/(1-t*z) is the g.f. of the indecomposable tilings, i.e., of those that cannot be split vertically into smaller tilings. The row generating polynomials are P(n) = (Fibonacci(n))^2. They satisfy the recurrence relation P(n) = (1+t)*(P(n-1) + t*P(n-2)) - t^3*P(n-3).
T(n,k) = T(n-2,k-2) + binomial(2*n-k-1, 2*n-2*k-1). - Michael A. Allen, Jun 24 2020
EXAMPLE
T(3,1)=4 because the 1 X 2 tile can be placed in any of the four corners of the 2 X 3 grid.
The irregular triangle begins as:
1;
1;
1, 2, 1;
1, 4, 4;
1, 6, 11, 6, 1;
1, 8, 22, 24, 9;
1, 10, 37, 62, 46, 12, 1;
1, 12, 56, 128, 148, 80, 16;
1, 14, 79, 230, 367, 314, 130, 20, 1;
1, 16, 106, 376, 771, 920, 610, 200, 25;
1, 18, 137, 574, 1444, 2232, 2083, 1106, 295, 30, 1;
1, 20, 172, 832, 2486, 4744, 5776, 4352, 1897, 420, 36;
MAPLE
G:=(1-t*z)/(1+t*z)/(1-z-2*t*z+t^2*z^2): Gser:=simplify(series(G, z=0, 14)): for n from 0 to 11 do P[n]:=sort(coeff(Gser, z, n)) od: for n from 0 to 11 do seq(coeff(P[n], t, k), k=0..2*floor(n/2)) od; # yields sequence in triangular form
MATHEMATICA
Block[{T}, T[0, 0]= T[1, 0]= 1; T[n_, k_]:= Which[k==0, 1, k==1, 2(n-1), True, T[n -2, k-2] + Binomial[2n-k-1, 2n-2k-1]]; Table[T[n, k], {n, 0, 14}, {k, 0, 2 Floor[n/2]}]] // Flatten (* Michael De Vlieger, Jun 24 2020 *)
PROG
(Magma)
function A123521(n, k)
if k eq 0 then return 1;
elif k eq 1 then return 2*(n-1);
else return A123521(n-2, k-2) + Binomial(2*n-k-1, 2*n-2*k-1);
end if; return A123521;
end function;
[A123521(n, k): k in [0..2*Floor(n/2)], n in [0..14]]; // G. C. Greubel, Sep 01 2022
(SageMath)
@CachedFunction
def T(n, k): # T = A123521
if (k==0): return 1
elif (k==1): return 2*(n-1)
else: return T(n-2, k-2) + binomial(2*n-k-1, 2*n-2*k-1)
flatten([[T(n, k) for k in (0..2*(n//2))] for n in (0..12)]) # G. C. Greubel, Sep 01 2022
CROSSREFS
Other triangles related to tiling using fences: A059259, A157897, A335964.
Sequence in context: A264336 A350012 A322038 * A322115 A294217 A123246
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Oct 16 2006
STATUS
approved