login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123520
Number of vertical dominoes in all possible tilings of a 2n X 3 grid by dominoes.
2
4, 28, 152, 744, 3436, 15284, 66224, 281424, 1178196, 4874444, 19973192, 81189688, 327817404, 1316035940, 5257118560, 20909651104, 82849544868, 327163551612, 1288036695544, 5057236343176, 19807689093644, 77408388584724
OFFSET
1,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000 (terms 0..100 from Vincenzo Librandi)
FORMULA
a(n) = Sum_{k=0..n} 2^(k+1) * k * C(n+k,2*k).
a(n) = Sum_{k=0..n} k * A123519(n,k).
G.f.: 4*z*(1-z)/(1-4*z+z^2)^2.
a(n) = (2+sqrt(3))^n*((1+sqrt(3))*n+1/sqrt(3))/3 + (2-sqrt(3))^n*((1-sqrt(3))*n-1/sqrt(3))/3. - Vaclav Kotesovec, Nov 29 2012
EXAMPLE
a(1) = 4 because a 2 X 3 grid can be tiled in 3 ways with dominoes: 3 horizontal dominoes, 1 horizontal domino above two adjacent vertical dominoes and 1 horizontal domino below two adjacent vertical dominoes; these have altogether 4 vertical dominoes.
MAPLE
a:=n->sum(k*2^(k+1)*binomial(n+k, 2*k), k=0..n): seq(a(n), n=1..24);
MATHEMATICA
FullSimplify[Table[(2+Sqrt[3])^n*((1+Sqrt[3])*n+1/Sqrt[3])/3 + (2-Sqrt[3])^n*((1-Sqrt[3])*n-1/Sqrt[3])/3, {n, 1, 20}]] (* Vaclav Kotesovec, Nov 29 2012 *)
Table[Sum[2^(k + 1)*k*Binomial[n + k, 2 k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Oct 14 2017 *)
PROG
(PARI) z='z+O('z^50); Vec(4*z*(1-z)/(1-4*z+z^2)^2) \\ G. C. Greubel, Oct 14 2017
CROSSREFS
Sequence in context: A006302 A272992 A272747 * A012847 A273431 A128721
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Oct 16 2006
STATUS
approved